The entrance loss of capillary flow at the nanoscale is crucial but often overlooked. This study investigates the entrance loss of capillary flow in narrow slit nanochannels using molecular dynamics simulations. The results show that the early stage of capillary flow is determined by entrance loss. During this period, capillary length increases linearly, while the capillary velocity remains constant. The effect of length-dependent friction loss becomes more apparent in the subsequent stages, causing the capillary length to deviate from linear and the capillary velocity to decrease. Roscoe's equation, which describes the flow through an infinitely thin slit, is used to model the entrance loss. Finite element simulations of flow through slits of varying height and length demonstrate the validity of Roscoe's equation in the continuum theory framework. Based on this, a capillary flow model is proposed that can accurately depict the hydrodynamic behavior of a capillary flow. Additionally, an approximate model ignoring the friction loss is proposed that predicts the linear increase in capillary length at the early stage. Theoretical analysis shows that the effect of entrance loss on capillary velocity is limited to the early stage, while the effect on capillary length can be extended to a large scale. Overall, the results of this study and the proposed models provide important theoretical support for applications related to capillary flows in nanoslits. The study emphasizes the importance of considering entrance loss in the early stages of a capillary flow and demonstrates the applicability of Roscoe's equation in modeling capillary flows in nanochannels.

1.
C.
Sun
,
R.
Zhou
,
Z.
Zhao
, and
B.
Bai
, “
Nanoconfined fluids: What can we expect from them?
J. Phys. Chem. Lett.
11
,
4678
(
2020
).
2.
C.
Sun
,
R.
Zhou
, and
B.
Bai
, “
How to accurately predict nanoscale flow: Theory of single-phase or two-phase?
Phys. Fluids
35
,
012013
(
2023
).
3.
F.
Zhao
,
Y. H.
Guo
,
X. Y.
Zhou
,
W.
Shi
, and
G. H.
Yu
, “
Materials for solar-powered water evaporation
,”
Nat. Rev. Mater.
5
,
388
(
2020
).
4.
X. F.
Chen
,
Y. B.
Zhu
,
H.
Yu
,
J. Z.
Liu
,
C. D.
Easton
,
Z. Y.
Wang
,
Y. X.
Hu
,
Z. L.
Xie
,
H. A.
Wu
,
X. W.
Zhang
,
D.
Li
, and
H. T.
Wang
, “
Ultrafast water evaporation through graphene membranes with subnanometer pores for desalination
,”
J. Membr. Sci.
621
,
118934
(
2021
).
5.
R. R.
Nair
,
H. A.
Wu
,
P. N.
Jayaram
,
I. V.
Grigorieva
, and
A. K.
Geim
, “
Unimpeded permeation of water through helium-leak-tight graphene-based membranes
,”
Science
335
,
442
(
2012
).
6.
K.
Gopinadhan
,
S.
Hu
,
A.
Esfandiar
,
M.
Lozada-Hidalgo
,
F. C.
Wang
,
Q.
Yang
,
A. V.
Tyurnina
,
A.
Keerthi
,
B.
Radha
, and
A. K.
Geim
, “
Complete steric exclusion of ions and proton transport through confined monolayer water
,”
Science
363
,
145
(
2019
).
7.
S.
Ahadian
,
J. A.
Finbloom
,
M.
Mofidfar
,
S. E.
Diltemiz
,
F.
Nasrollahi
,
E.
Davoodi
,
V.
Hosseini
,
I.
Mylonaki
,
S.
Sangabathuni
, and
H.
Montazerian
, “
Micro and nanoscale technologies in oral drug delivery
,”
Adv. Drug Delivery Rev.
157
,
37
(
2020
).
8.
Y.
You
,
A.
Ismail
,
G.-H.
Nam
,
S.
Goutham
,
A.
Keerthi
, and
B.
Radha
, “
Angstrofluidics: Walking to the limit
,”
Annu. Rev. Mater. Res.
52
,
189
(
2022
).
9.
N.
Kavokine
,
R. R.
Netz
, and
L.
Bocquet
, “
Fluids at the nanoscale: From continuum to subcontinuum transport
,”
Annu. Rev. Fluid Mech.
53
,
377
(
2021
).
10.
Y.-T.
Cheng
,
H.-Y.
Chang
,
H.-K.
Tsao
, and
Y.-J.
Sheng
, “
Imbibition dynamics and steady flows in graphene nanochannels with sparse geometric and chemical defects
,”
Phys. Fluids
34
,
112003
(
2022
).
11.
V.-P.
Mai
,
W.-H.
Huang
,
Y.-L.
Chang
, and
R.-J.
Yang
, “
Composite GO@Silk membrane for capillary-driven energy conversion
,”
J. Membr. Sci.
671
,
121403
(
2023
).
12.
B.
Kandra
,
A.
Tall
,
M.
Gomboš
, and
D.
Pavelková
, “
Quantification of evapotranspiration by calculations and measurements using a Lysimeter
,”
Water
15
,
373
(
2023
).
13.
W.
Lei
,
M. K.
Rigozzi
, and
D. R.
McKenzie
, “
The physics of confined flow and its application to water leaks, water permeation and water nanoflows: A review
,”
Rep. Prog. Phys.
79
,
025901
(
2016
).
14.
B.
Radha
,
A.
Esfandiar
,
F. C.
Wang
,
A. P.
Rooney
,
K.
Gopinadhan
,
A.
Keerthi
,
A.
Mishchenko
,
A.
Janardanan
,
P.
Blake
,
L.
Fumagalli
,
M.
Lozada-Hidalgo
,
S.
Garaj
,
S. J.
Haigh
,
I. V.
Grigorieva
,
H. A.
Wu
, and
A. K.
Geim
, “
Molecular transport through capillaries made with atomic-scale precision
,”
Nature
538
,
222
(
2016
).
15.
X.
Wang
,
M. L.
Hsieh
,
J. A.
Bur
,
S. Y.
Lin
, and
S.
Narayanan
, “
Capillary-driven solar-thermal water desalination using a porous selective absorber
,”
Mater. Today Energy
17
,
100453
(
2020
).
16.
R. K.
Joshi
,
P.
Carbone
,
F. C.
Wang
,
V. G.
Kravets
,
Y.
Su
,
I. V.
Grigorieva
,
H. A.
Wu
,
A. K.
Geim
, and
R. R.
Nair
, “
Precise and ultrafast molecular sieving through graphene oxide membranes
,”
Science
343
,
752
(
2014
).
17.
G.
Martic
,
F.
Gentner
,
D.
Seveno
,
D.
Coulon
,
J.
De Coninck
, and
T. D.
Blake
, “
A molecular dynamics simulation of capillary imbibition
,”
Langmuir
18
,
7971
(
2002
).
18.
D. I.
Dimitrov
,
A.
Milchev
, and
K.
Binder
, “
Capillary rise in nanopores: Molecular dynamics evidence for the Lucas-Washburn equation
,”
Phys. Rev. Lett.
99
,
054501
(
2007
).
19.
J. K.
Holt
,
H. G.
Park
,
Y.
Wang
,
M.
Stadermann
,
A. B.
Artyukhin
,
C. P.
Grigoropoulos
,
A.
Noy
, and
O.
Bakajin
, “
Fast mass transport through sub-2-nanometer carbon nanotubes
,”
Science
312
,
1034
(
2006
).
20.
A. K.
Geim
, “
Exploring two-dimensional empty space
,”
Nano Lett.
21
,
6356
(
2021
).
21.
A.
Keerthi
,
S.
Goutham
,
Y.
You
,
P.
Iamprasertkun
,
R. A. W.
Dryfe
,
A. K.
Geim
, and
B.
Radha
, “
Water friction in nanofluidic channels made from two-dimensional crystals
,”
Nat. Commun.
12
,
3092
(
2021
).
22.
Q.
Xie
,
M. A.
Alibakhshi
,
S.
Jiao
,
Z.
Xu
,
M.
Hempel
,
J.
Kong
,
H. G.
Park
, and
C.
Duan
, “
Fast water transport in graphene nanofluidic channels
,”
Nat. Nanotechnol.
13
,
238
(
2018
).
23.
J.
Zhong
,
M. A.
Alibakhshi
,
Q.
Xie
,
J.
Riordon
,
Y.
Xu
,
C.
Duan
, and
D.
Sinton
, “
Exploring anomalous fluid behavior at the nanoscale: Direct visualization and quantification via nanofluidic devices
,”
Acc. Chem. Res.
53
,
347
(
2020
).
24.
E.
Oyarzua
,
J. H.
Walther
,
A.
Mejia
, and
H. A.
Zambrano
, “
Early regimes of water capillary flow in slit silica nanochannels
,”
Phys. Chem. Chem. Phys.
17
,
14731
(
2015
).
25.
S.
Gravelle
,
L.
Joly
,
C.
Ybert
, and
L.
Bocquet
, “
Large permeabilities of hourglass nanopores: From hydrodynamics to single file transport
,”
J. Chem. Phys.
141
,
18C526
(
2014
).
26.
R.
Roscoe
, “
XXXI. The flow of viscous fluids round plane obstacles
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
40
,
338
(
1949
).
27.
H.
Yu
,
S.
Li
,
J.
Li
,
S.
Zhu
, and
C.
Sun
, “
Interfacial mass transfer characteristics and molecular mechanism of the gas-oil miscibility process in gas flooding
,”
Acta Phys.-Chim. Sin.
38
,
2006061
(
2022
).
28.
C.
Li
,
H.
Singh
, and
J.
Cai
, “
Spontaneous imbibition in shale: A review of recent advances
,”
Capillarity
2
,
17
(
2019
).
29.
H.
Lu
,
Y.
Xu
,
C.
Duan
,
P.
Jiang
, and
R.
Xu
, “
Experimental study on capillary imbibition of shale oil in nanochannels
,”
Energy Fuels
36
,
5267
(
2022
).
30.
C. H.
Bosanquet
, “
LV. On the flow of liquids into capillary tubes
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
45
,
525
(
1923
).
31.
G. G.
Stokes
, “
On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids
,”
Trans. Cambridge Philos. Soc.
8
,
287
(
1845
).
32.
R.
Lucas
, “
Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten
,”
Kolloid-Z.
23
,
15
(
1918
).
33.
E. W.
Washburn
, “
The dynamics of capillary flow
,”
Phys. Rev.
17
,
273
(
1921
).
34.
H. L.
Weissberg
, “
End correction for slow viscous flow through long tubes
,”
Phys. Fluids
5
,
1033
(
1962
).
35.
Z.
Dagan
,
S.
Weinbaum
, and
R.
Pfeffer
, “
An infinite-series solution for the creeping motion through an orifice of finite length
,”
J. Fluid Mech.
115
,
505
(
1982
).
36.
C.-O.
Ng
and
W.
Xie
, “
End loss for Stokes flow through a slippery circular pore in a barrier of finite thickness
,”
Phys. Fluids
30
,
103604
(
2018
).
37.
C.
Sun
,
R. F.
Zhou
,
Z.
Zhao
, and
B.
Bai
, “
Extending the classical continuum theory to describe water flow through two-dimensional nanopores
,”
Langmuir
37
,
6158
(
2021
).
38.
J. H.
Walther
,
K.
Ritos
,
E. R.
Cruz-Chu
,
C. M.
Megaridis
, and
P.
Koumoutsakos
, “
Barriers to superfast water transport in carbon nanotube membranes
,”
Nano Lett.
13
,
1910
(
2013
).
39.
R. A.
Sampson
, “
On Stokes's current function
,”
Philos. Trans. R. Soc. London
182
,
449
(
1890
).
40.
S.
Gravelle
,
C.
Ybert
,
L.
Bocquet
, and
L.
Joly
, “
Anomalous capillary filling and wettability reversal in nanochannels
,”
Phys. Rev. E
93
,
033123
(
2016
).
41.
K. H.
Jensen
,
K.
Berg-Sørensen
,
H.
Bruus
,
N. M.
Holbrook
,
J.
Liesche
,
A.
Schulz
,
M. A.
Zwieniecki
, and
T.
Bohr
, “
Sap flow and sugar transport in plants
,”
Rev. Mod. Phys.
88
,
035007
(
2016
).
42.
R.
Barrer
and
D.
Nicholson
, “
Flow in capillary systems—II: Low pressure transition flow of gases in short capillaries, rectangular slits, beds of spheres and parallel capillary bundles
,”
Br. J. Appl. Phys.
17
,
1091
(
1966
).
43.
K.
Falk
,
F.
Sedlmeier
,
L.
Joly
,
R. R.
Netz
, and
L.
Bocquet
, “
Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction
,”
Nano Lett.
10
,
4067
(
2010
).
44.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular-dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
45.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in 't Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
46.
L.
Slade
and
H.
Levine
, “
Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety
,”
Crit. Rev. Food Sci. Nutr.
30
,
115
(
1991
).
47.
Y.
Wu
,
H. L.
Tepper
, and
G. A.
Voth
, “
Flexible simple point-charge water model with improved liquid-state properties
,”
J. Chem. Phys.
124
,
024503
(
2006
).
48.
A. T.
Celebi
,
C. T.
Nguyen
,
R.
Hartkamp
, and
A.
Beskok
, “
The role of water models on the prediction of slip length of water in graphene nanochannels
,”
J. Chem. Phys.
151
,
174705
(
2019
).
49.
H. A.
Lorentz
, “
Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase
,”
Ann. Phys.
248
,
127
(
1881
).
50.
D.
Berthelot
, “
Sur le mélange des gaz
,”
Compt. R.
126
,
1857
1858
(
1898
).
51.
R.
Zhou
,
C.
Sun
, and
B.
Bai
, “
Wall friction should be decoupled from fluid viscosity for the prediction of nanoscale flow
,”
J. Chem. Phys.
154
,
074709
(
2021
).
52.
P. K.
Yuet
and
D.
Blankschtein
, “
Molecular dynamics simulation study of water surfaces: Comparison of flexible water models
,”
J. Phys. Chem. B
114
,
13786
(
2010
).
53.
M.
Neek-Amal
,
A.
Lohrasebi
,
M.
Mousaei
,
F.
Shayeganfar
,
B.
Radha
, and
F. M.
Peeters
, “
Fast water flow through graphene nanocapillaries: A continuum model approach involving the microscopic structure of confined water
,”
Appl. Phys. Lett.
113
,
083101
(
2018
).
54.
Y.
Gao
,
M.
Li
,
H.
Zhang
,
Y.
Zhang
,
W.
Lu
, and
B.
Xu
, “
Anomalous solid-like necking of confined water outflow in hydrophobic nanopores
,”
Matter
5
,
266
(
2022
).
You do not currently have access to this content.