New imaging methods have enabled the detection of unruptured abdominal aortic aneurysms (AAA). It is necessary to develop appropriate mathematical models for rupture prediction to allow a proper patient treatment plan. To provide valid hemodynamic parameters, high-fidelity numerical models with patient-specific boundary conditions are needed. Researchers have pointed out in recent research articles and reviews that those morphological parameters, such as shape, dilation ratio, neck angle, common iliac bifurcation angle, and AAA type, consistently correlate with the rupture mechanism. However, it is unclear how morphological indicators affect hemodynamics-based computational fluid dynamics predictions. The present work investigates the influence of AAA shape on local and global hemodynamics parameters and rupture predictions. Five cases of magnetic resonance imaging scan-based data for patient-specific aortofemoral artery modeling are explored. The inflow conditions are patient-specific, and an open loop system has been considered to model all five cases. Hemodynamics parameters in pulsating conditions, such as wall shear stress (WSS), velocity contour, time average WSS (TAWSS), oscillatory shear index (OSI), vorticity, and streamlines, are computed and investigated. Both maximum dilation diameter and aneurysm neck angle are found to have substantial effects on local hemodynamics parameters. The magnitude of WSS, TAWSS, and OSI increases and decreases non-linearly with a change in maximum diameter during the cardiac process. Also, aneurysms with doubly titled and completely saccular shape show complex streamlines, low WSS, and high residence time in the sac area of the wall.

1.
C.
Fleming
and
C.
Guidelines
, “
Screening for abdominal aortic aneurysm: A best-evidence systematic
,”
Ann. Intern. Med.
142
,
203
(
2005
).
2.
R. F.
Gillum
, “
Epidemiology of aortic aneurysm in the United States
,”
J. Clin. Epidemiol.
48
,
1289
(
1995
).
3.
S.
Aggarwal
,
A.
Qamar
,
V.
Sharma
, and
A.
Sharma
, “
Abdominal aortic aneurysm: A comprehensive review
,”
Exp. Clin. Cardiol.
16
,
11
(
2011
).
4.
F. A.
Lederle
,
G. R.
Johnson
,
S. E.
Wilson
,
E. P.
Chute
,
R. J.
Hye
,
M. S.
Makaroun
,
G. W.
Barone
,
D.
Bandyk
,
G. L.
Moneta
, and
R. G.
Makhoul
, “
The aneurysm detection and management study screening program: Validation cohort and final results
,”
Arch. Intern. Med.
160
,
1425
(
2000
).
5.
A. R.
Brady
,
S. G.
Thompson
,
F. G. R.
Fowkes
,
R. M.
Greenhalgh
, and
J. T.
Powell
, “
Abdominal aortic aneurysm expansion: Risk factors and time intervals for surveillance
,”
Circulation
110
,
16
(
2004
).
6.
D. C.
Brewster
,
J. L.
Cronenwett
,
J. W.
Hallett
,
K. W.
Johnston
,
W. C.
Krupski
, and
J. S.
Matsumura
, “
Guidelines for the treatment of abdominal aortic aneurysms: Report of a subcommittee of the Joint Council of the American Association for Vascular Surgery and Society for Vascular Surgery
,”
J. Vasc. Surg.
37
,
1106
(
2003
).
7.
S.
Qin
,
B.
Wu
,
J.
Liu
,
W. S.
Shiu
,
Z.
Yan
,
R.
Chen
, and
X. C.
Cai
, “
Efficient parallel simulation of hemodynamics in patient-specific abdominal aorta with aneurysm
,”
Comput. Biol. Med.
136
,
104652
(
2021
).
8.
K. A.
Hance
,
M.
Tataria
,
S. J.
Ziporin
,
J. K.
Lee
, and
R. W.
Thompson
, “
Monocyte chemotactic activity in human abdominal aortic aneurysms: Role of elastin degradation peptides and the 67-kD cell surface elastin receptor
,”
J. Vasc. Surg.
35
,
254
(
2002
).
9.
F. J.
Miller
,
W. J.
Sharp
,
X.
Fang
,
L. W.
Oberley
,
T. D.
Oberley
, and
N. L.
Weintraub
, “
Oxidative stress in human abdominal aortic aneurysms
,”
Arterioscler., Thromb., Vasc. Biol.
22
,
560
(
2002
).
10.
R. W.
Thompson
,
D. R.
Holmes
,
R. A.
Mertens
,
S.
Liao
,
M. D.
Botney
,
R. P.
Mecham
,
H. G.
Welgus
, and
W. C.
Parks
, “
Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms: An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages
,”
J. Clin. Invest.
96
,
318
(
1995
).
11.
J. T.
Allardice
,
G. J.
Allwright
,
J. M. C.
Wafula
, and
A. P.
Wyatt
, “
High prevalence of abdominal aortic aneurysm in men with peripheral vascular disease: Screening by ultrasonography
,”
Br. J. Surg.
75
,
240
(
1988
).
12.
J. F.
Vollmar
,
P.
Pauschinger
,
E.
Paes
,
E.
Henze
, and
A.
Friesch
, “
Aortic aneurysms as late sequelae of above-knee amputation
,”
Lancet
334
,
834
(
1989
).
13.
J. E.
Moore
,
C.
Xu
,
S.
Glagov
,
C. K.
Zarins
, and
D. N.
Ku
, “
Fluid wall shear stress measurements in a model of the human abdominal aorta: Oscillatory behavior and relationship to atherosclerosis
,”
Atherosclerosis
110
,
225
(
1994
).
14.
B. T.
Tang
,
C. P.
Cheng
,
M. T.
Draney
,
N. M.
Wilson
,
P. S.
Tsao
,
R. J.
Herfkens
, and
C. A.
Taylor
, “
Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: Quantification using image-based computer modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
291
,
668
(
2006
).
15.
L.
Boussel
,
V.
Rayz
,
C.
McCulloch
,
A.
Martin
,
G.
Acevedo-Bolton
,
M.
Lawton
,
R.
Higashida
,
W. S.
Smith
,
W. L.
Young
, and
D.
Saloner
, “
Aneurysm growth occurs at region of low wall shear stress
,”
Stroke
39
,
2997
(
2008
).
16.
J.
Chen
and
X. Y.
Lu
, “
Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch
,”
J. Biomech.
37
,
1899
(
2004
).
17.
M.
Nagargoje
and
R.
Gupta
, “
Effect of sinus size and position on hemodynamics during pulsatile flow in a carotid artery bifurcation
,”
Comput. Methods Programs Biomed.
192
,
105440
(
2020
).
18.
M. S.
Nagargoje
,
D. K.
Mishra
, and
R.
Gupta
, “
Pulsatile flow dynamics in symmetric and asymmetric bifurcating vessels
,”
Phys. Fluids
33
,
071904
(
2021
).
19.
T.
Chaichana
,
Z.
Sun
, and
J.
Jewkes
, “
Computational fluid dynamics analysis of the effect of plaques in the left coronary artery
,”
Comput. Math. Methods Med.
2012
,
504367
.
20.
M.
Halabian
,
A.
Karimi
,
B.
Beigzadeh
, and
M.
Navidbakhsh
, “
A numerical study on the hemodynamic and shear stress of double aneurysm through S-shaped vessel
,”
Biomed. Eng.: Appl., Basis Commun.
27
,
1550033
(
2015
).
21.
Z.
Bai
and
L.
Zhu
, “
Simulation of blood flow past a distal arteriovenous-graft anastomosis at low Reynolds numbers
,”
Phys. Fluids
31
,
091902
(
2019
).
22.
Z.
Bai
and
L.
Zhu
, “
3D simulation of a viscous flow past a compliant model of arteriovenous-graft
nastomosis
,”
Comput. Fluids
181
,
403
(
2019
).
23.
S.
Karimi
,
M.
Dabagh
,
P.
Vasava
,
M.
Dadvar
,
B.
Dabir
, and
P.
Jalali
, “
Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry
,”
J. Non-Newtonian Fluid Mech.
207
,
42
(
2014
).
24.
D. N.
Ku
and
G. W.
Woodruff
, “
Blood flow in arteries
,”
Annu. Rev. Fluid Mech.
29
,
399
(
1997
).
25.
V. L.
Rayz
,
L.
Boussel
,
M. T.
Lawton
,
G.
Acevedo-Bolton
,
L.
Ge
,
W. L.
Young
,
R. T.
Higashida
, and
D.
Saloner
, “
Numerical modeling of the flow in intracranial aneurysms: Prediction of regions prone to thrombus formation
,”
Ann. Biomed. Eng.
36
,
1793
(
2008
).
26.
F.
Joly
,
G.
Soulez
,
D.
Garcia
,
S.
Lessard
, and
C.
Kauffmann
, “
Flow stagnation volume and abdominal aortic aneurysm growth: Insights from patient-specific computational flow dynamics of Lagrangian-coherent structures
,”
Comput. Biol. Med.
92
,
98
(
2018
).
27.
D.
Humphrey
and
G. A.
Holzapfel
, “
Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms
,”
J. Biomech.
45
,
805
(
2012
).
28.
B. J.
Doyle
,
A. J.
Cloonan
,
M. T.
Walsh
,
D. A.
Vorp
, and
T. M.
McGloughlin
, “
Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques
,”
J. Biomech.
43
,
1408
(
2010
).
29.
S.
Choudhury
,
K.
Anupindi
, and
B. S. V.
Patnaik
, “
Influence of wall shear stress and geometry on the lumen surface concentration of low density lipoprotein in a model abdominal aortic aneurysm
,”
Phys. Fluids
31
,
011901
(
2019
).
30.
M.
Texon
, “
A hemodynamic concept of atherosclerosis, with particular reference to coronary occlusion
,”
Arch. Intern. Med.
99
,
418
(
1957
).
31.
C. G.
Caro
,
J. M.
Fitz-Gerald
, and
R. C.
Schroter
, “
Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis
,”
Proc. R. Soc. London, Ser. B
177
,
109
(
1971
).
32.
A.
Guha
and
K.
Pradhan
, “
Secondary motion in three-dimensional branching networks
,”
Phys. Fluids
29
,
063602
(
2017
).
33.
A.
Guha
,
K.
Pradhan
, and
P. K.
Halder
, “
Finding order in complexity: A study of the fluid dynamics in a three-dimensional branching network
,”
Phys. Fluids
28
,
123602
(
2016
).
34.
A.
Otero-Cacho
,
M.
Aymerich
,
M. T.
Flores-Arias
,
M.
Abal
,
E.
Álvarez
,
V.
Pérez-Muñuzuri
, and
A. P.
Muñuzuri
, “
Determination of hemodynamic risk for vascular disease in planar artery bifurcations
,”
Sci. Rep.
8
,
2795
(
2018
).
35.
J.
Eustice
,
Flow of Water in Curved Pipes
(
Proceeding of the Royal Society A
,
1910
).
36.
W. R.
Dean
, “
Note on the motion of fluid in a curved pipe
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
4
,
208
223
(
1911
).
37.
W. Y.
Soh
and
S. A.
Berger
, “
Laminar entrance flow in a curved pipe
,”
J. Fluid Mech.
148
,
109
(
1984
).
38.
M. R.
Pfaller
,
J.
Pham
,
A.
Verma
,
L.
Pegolotti
,
N. M.
Wilson
,
D. W.
Parker
,
W.
Yang
, and
A. L.
Marsden
, “
Automated generation of 0D and 1D reduced-order models of patient-specific blood flow
,”
Int. J. Numer. Methods Biomed. Eng.
38
,
e3639
(
2022
).
39.
N. M.
Wilson
,
A. K.
Ortiz
, and
A. B.
Johnson
, “
The vascular model repository: A public resource of medical imaging data and blood flow simulation result
,”
ASME J. Med. Devices
7
,
040923
(
2013
).
40.
I. E.
Vignon-Clementel
,
C.
Alberto Figueroa
,
K. E.
Jansen
, and
C. A.
Taylor
, “
Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries
,”
Comput. Methods Appl. Mech. Eng.
195
,
3776
(
2006
).
41.
I. E.
Vignon-Clementel
,
C. A.
Figueroa
,
K. E.
Jansen
, and
C. A.
Taylor
, “
Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries
,”
Comput. Methods Biomech. Biomed. Eng.
13
,
625
(
2010
).
42.
B. N.
Steele
,
M. S.
Olufsen
, and
C. A.
Taylor
, “
Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions
,”
Comput. Methods Biomech. Biomed. Eng.
10
,
39
(
2007
).
43.
C. H.
Whiting
and
K. E.
Jansen
, “
A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis
,”
Int. J. Numer. Methods Fluids
35
,
93
(
2001
).
44.
C. A.
Taylor
and
D. A.
Steinman
, “
Image-based modeling of blood flow and vessel wall dynamics: Applications, methods and future directions
,” in
Proceedings of the Sixth International Bio-Fluid Mechanics Symposium and Workshop
, 28–30 March,
Pasadena, CA
(
2008
);
Ann. Biomed. Eng.
38
,
1188
(
2010
).
45.
J.
Xiang
,
V. M.
Tutino
,
K. V.
Snyder
, and
H.
Meng
, “
CFD: Computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment
,”
Am. J. Neuroradiol.
35
,
1849
(
2014
).
46.
M.
Jiang
,
R.
Machiraju
, and
D.
Thompson
, “
Detection and visualization of vortices
,”
Visualization Handbook
(
Mississippi State University
,
2005
), p.
295
.
47.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
(
1995
).
48.
M. S.
Nagargoje
,
C.
Valeti
,
N.
Manjunath
,
B.
Akhade
,
B. J.
Sudhir
,
B. S. V.
Patnaik
, and
S. K.
Kannath
, “
Influence of morphological parameters on hemodynamics in internal carotid artery bifurcation aneurysms
,”
Phys. Fluids
34
,
101901
(
2022
).
49.
H.
Meng
,
V. M.
Tutino
,
J.
Xiang
, and
A.
Siddiqui
, “
High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture
,”
Am. J. Neuroradiol.
35
,
1254
(
2014
).
50.
U. Y.
Lee
,
J.
Jung
,
H. S.
Kwak
,
D. H.
Lee
,
G. H.
Chung
,
J. S.
Park
, and
E. J.
Koh
, “
Wall shear stress and flow patterns in unruptured and ruptured anterior communicating artery aneurysms using computational fluid dynamics
,”
J. Korean Neurosurg. Soc.
61
,
689
(
2018
).
51.
C.
Cox
and
M. W.
Plesniak
, “
The effect of entrance flow development on vortex formation and wall shear stress in a curved artery model
,”
Phys. Fluids
33
,
101908
(
2021
).
52.
A.
Seetharaman
,
H.
Keramati
,
K.
Ramanathan
,
M.
E Cove
,
S.
Kim
,
K. J.
Chua
, and
H. L.
Leo
, “
Vortex dynamics of veno-arterial extracorporeal circulation: A computational fluid dynamics study
,”
Phys. Fluids
33
,
061908
(
2021
).
53.
S.
Kumar
,
S. K.
Rai
,
B. V. R.
Kumar
, and
O.
Shankar
, “
The pulsatile 3D-Hemodynamics in a doubly afflicted human descending abdominal artery with iliac branching
,”
Comput. Methods Biomech. Biomed. Eng.
10
,
1
(
2022
).
You do not currently have access to this content.