Droplet behavior involving electrothermal coupling fields has gradually attracted the attention of researchers, one of which includes electrosurgical scalpels that often contact biofluids. However, the evolution of bio-droplets exposed to the surface of electrosurgical scalpels is not yet well understood. Here, we experimentally studied the effect of different heating temperatures on plasma droplets on the laser-patterned surface (LPS) and the original surface (OS) under defined direct-current (DC) or alternating-current (AC) electric fields. The results show that at a lower heating temperature, the evolution of plasma droplets was dominated by electrolysis. Oxygen bubbles generated on the papillae on the LPS in the DC field inhibited the targeted adsorption of plasma proteins on this surface. In contrast, in the AC field, only a small number of bubbles was generated, which is not sufficient to inhibit protein adsorption, leading to the formation of coagulation on the papillae after heating. At higher heating temperatures, the rapid formation of coagulation resulted in the suppression of electrolysis. The plasma proteins were then transported by the Marangoni flow causing coagulation to reach a thickness of stress mutation. Stress release over the entire coagulation caused its edges to bend and then detach from the papillae. Thus, the LPS exhibited excellent anti-adhesive properties to plasma droplets under electrothermal excitations compared to the OS. This study provides valuable information for understanding the mechanisms of contact behavior between biofluids and electrosurgical scalpels and demonstrates great promise for their anti-adhesive performance.

1.
H.
Xu
,
J.
Wang
,
K.
Yu
,
B.
Li
,
W.
Zhang
,
L.
Zuo
, and
H.-B.
Kim
, “
Droplet impact on hot substrates under a uniform electric field
,”
Phys. Fluids
34
,
092111
(
2022
).
2.
J.
Huang
,
L.
Qi
,
J.
Luo
,
L.
Zhao
, and
H.
Yi
, “
Suppression of gravity effects on metal droplet deposition manufacturing by an anti-gravity electric field
,”
Int. J. Mach. Tool Manuf.
148
,
103474
(
2020
).
3.
C. L.
Song
,
Y.
Tao
,
W. Y.
Liu
,
Y. C.
Chen
,
R.
Xue
,
T. Y.
Jiang
,
B.
Li
,
H. Y.
Jiang
, and
Y. K.
Ren
, “
Fluid pumping by liquid metal droplet utilizing ac electric field
,”
Phys. Rev. E
105
,
025102
(
2022
).
4.
H.
Xu
,
J.
Wang
,
J.
Tian
,
Y.
Huo
,
B.
Li
,
D.
Wang
,
W.
Zhang
, and
J.
Yao
, “
Evaporation characteristics and heat transfer enhancement of sessile droplets under non-uniform electric field
,”
Exp. Therm. Fluid Sci.
126
,
110378
(
2021
).
5.
Y.
Tian
,
H.
Wang
,
X.
Zhou
,
Z.
Xie
,
X.
Zhu
,
R.
Chen
,
Y.
Ding
, and
Q.
Liao
, “
How does the electric field make a droplet exhibit the ejection and rebound behaviour on a superhydrophobic surface?
,”
J. Fluid Mech.
941
,
A18
(
2022
).
6.
F.
Celestini
and
G.
Kirstetter
, “
Effect of an electric field on a Leidenfrost droplet
,”
Soft Matter
8
,
5992
(
2012
).
7.
W.
Karaki
,
A.
Akyildiz
,
S.
De
, and
D. A.
Borca Tasciuc
, “
Energy dissipation in ex vivo porcine liver during electrosurgery
,”
IEEE Trans. Biomed. Eng.
64
,
1211
(
2017
).
8.
C.
Bao
and
S. K.
Mazumder
, “
Reduced collateral tissue damage using thermal-feedback-based power adaptation of an electrosurgery inverter
,”
IEEE Trans. Power Electron.
37
,
11540
(
2022
).
9.
K. L.
Ou
,
C. C.
Weng
,
E.
Sugiatno
,
M.
Ruslin
,
Y. H.
Lin
, and
H. Y.
Cheng
, “
Effect of nanostructured thin film on minimally invasive surgery devices applications: Characterization, cell cytotoxicity evaluation and an animal study in rat
,”
Surg. Endosc.
30
,
3035
(
2016
).
10.
P.
Zhang
,
G.
Liu
,
D.
Zhang
, and
H.
Chen
, “
Liquid-infused surfaces on electrosurgical instruments with exceptional antiadhesion and low-damage performances
,”
ACS Appl. Mater. Interfaces
10
,
33713
(
2018
).
11.
Z.
Han
,
J.
Fu
,
Y.
Fang
,
J.
Zhang
,
S.
Niu
, and
L.
Ren
, “
Anti-adhesive property of maize leaf surface related with temperature and humidity
,”
J. Bionic Eng.
14
,
540
(
2017
).
12.
Z.
Han
,
J.
Fu
,
X.
Feng
,
S.
Niu
,
J.
Zhang
, and
L.
Ren
, “
Bionic anti-adhesive electrode coupled with maize leaf microstructures and TiO2 coating
,”
RSC Adv.
7
,
45287
(
2017
).
13.
Z.
Liu
,
F.
Wu
,
H.
Gu
,
J.
Feng
,
D.
Huang
,
L.
Zheng
,
G.
Yao
,
Z.
Chen
, and
C.
Wang
, “
Adhesion failure and anti-adhesion bionic structure optimization of surgical electrodes in soft tissue cutting
,”
J. Manuf. Process.
89
,
444
(
2023
).
14.
K.
Li
,
L.
Lu
,
H.
Chen
,
G.
Jiang
,
H.
Ding
,
M.
Yu
, and
Y.
Xie
, “
Cutting performance of surgical electrodes by constructing bionic micro-striped structures
,”
Front. Mech. Eng.
18
,
12
(
2023
).
15.
K.
Li
,
Y.
Xie
,
J.
Lei
,
S.
Zhang
,
Z.
Liu
, and
L.
Lu
, “
An inspiration from purple orchid leaves: Surface characteristics and wettability of nanoscale organometallic coatings electrodeposited on laser-patterned microstructures
,”
Surf. Coat. Technol.
427
,
127817
(
2021
).
16.
K.
Li
,
Y.
Xie
,
B.
Tang
,
M.
Yu
,
H.
Ding
,
C.
Li
, and
L.
Lu
, “
Evolution of electro-induced blood plasma droplets on a superhydrophobic microstructured surface
,”
Appl. Phys. Lett.
121
,
113701
(
2022
).
17.
F.
Mugele
and
J.-C.
Baret
, “
Electrowetting: From basics to applications
,”
J. Phys.: Condens. Matter
17
,
R705
(
2005
).
18.
S.
Bansal
and
S.
Subramanian
, “
A microfluidic acoustic metamaterial using electrowetting: Enabling active broadband tunability
,”
Adv. Mater. Technol.
6
,
2100491
(
2021
).
19.
E.
Gjika
,
M.
Pekker
,
A.
Shashurin
,
M.
Shneider
,
T.
Zhuang
,
J.
Canady
, and
M.
Keidar
, “
The cutting mechanism of the electrosurgical scalpel
,”
J. Phys. D
50
,
025401
(
2017
).
20.
H.
Chen
,
Y.
Zhang
,
L.
Zhang
,
X.
Ding
, and
D.
Zhang
, “
Applications of bioinspired approaches and challenges in medical devices
,”
Bio-Des. Manuf.
4
,
146
148
(
2021
).
21.
L.
Lu
,
W.
Yao
,
Y.
Xie
,
K.
Li
, and
Z.
Wan
, “
Study on the wettability of biomimetic stainless-steel surfaces inspired by Bauhinia Linn. leaf
,”
Surf. Coat. Technol.
405
,
126721
(
2021
).
22.
A. B. D.
Cassie
and
S.
Baxter
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
40
,
546
551
(
1944
).
23.
F. R.
Smith
and
D.
Brutin
, “
Wetting and spreading of human blood: Recent advances and applications
,”
Curr. Opin. Colloid. Interface Sci.
36
,
78
(
2018
).
24.
M. S.
Wrighton
,
A. B.
Ellis
,
P. T.
Wolczanski
,
D. L.
Morse
,
H. B.
Abrahamson
, and
David S.
Ginley
, “
Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential
,”
J. Am. Chem. Soc.
8
,
2774
2779
(
1976
).
25.
H.-C.
Cheng
,
H.-C.
Lin
, and
P.-H.
Chen
, “
Boiling heat transfer enhancement over copper tube via electrolytic and electrostatic effects
,”
Appl. Therm. Eng.
199
,
117584
(
2021
).
26.
S.
Dash
and
S. V.
Garimella
, “
Droplet evaporation on heated hydrophobic and superhydrophobic surfaces
,”
Phys. Rev. E
89
,
042402
(
2014
).
27.
J.
Muñoz
,
J.
Arcos
,
O.
Bautista
, and
F.
Méndez
, “
Influence of thermocapillary flow induced by a heated substrate on atomization driven by surface acoustic waves
,”
Phys. Fluids
35
,
012119
(
2023
).
28.
D.
Brutin
,
B.
Sobac
,
B.
Loquet
, and
J.
Sampol
, “
Pattern formation in drying drops of blood
,”
J. Fluid Mech.
667
,
85
(
2011
).
29.
A.
Roy
,
R. A. I.
Haque
,
A. J.
Mitra
,
M. D.
Choudhury
,
S.
Tarafdar
, and
T.
Dutta
, “
Understanding flow features in drying droplets via Euler characteristic surfaces—A topological tool
,”
Phys. Fluids
32
,
123310
(
2020
).
30.
Z.
Neda
,
K. T.
Leung
,
L.
Jozsa
, and
M.
Ravasz
, “
Spiral cracks in drying precipitates
,”
Phys. Rev. Lett.
88
,
095502
(
2002
).
31.
B.
Sobac
and
D.
Brutin
, “
Desiccation of a sessile drop of blood: Cracks, folds formation and delamination
,”
Colloids Surf., A
448
,
34
(
2014
).
32.
S.
Adera
,
R.
Raj
,
R.
Enright
, and
E. N.
Wang
, “
Non-wetting droplets on hot superhydrophilic surfaces
,”
Nat. Commun.
4
,
2518
(
2013
).
33.
J. Y.
Ho
,
K. F.
Rabbi
,
S.
Khodakarami
,
J.
Ma
,
K. S.
Boyina
, and
N.
Miljkovic
, “
Opportunities in nano-engineered surface designs for enhanced condensation heat and mass transfer
,”
J. Heat Transfer
144
,
050801
(
2022
).
34.
F. E.
Senftle
,
J. R.
Grant
, and
F. P.
Senftle
, “
Low-voltage DC/AC electrolysis of water using porous graphite electrodes
,”
Electrochim. Acta
55
,
5148
(
2010
).

Supplementary Material

You do not currently have access to this content.