The wetting of thin films depends critically on the sign of the spreading coefficient S = γ S G − ( γ S L + γ L G ). We discuss the cases S < 0, S = 0, and S > 0 for transient models with contact line dissipation and find that the use of a dynamic contact angle solves problems for S > 0 that models might otherwise have. For initial data with a non-zero slope and S > 0, we show that there exists a finite time t p at which the contact angle of the thin film goes to zero. Then, a molecular precursor emerges from the thin film and moves outward at a constant velocity.
REFERENCES
1.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,” Rev. Mod. Phys.
69
(3
), 931
(1997
).2.
H.
von Helmholtz
, Wissenschaftliche Abhandlungen
(ETH-Bibliothek Zürich
, 1882
), Vol. 1
, pp. 223
.3.
M.
Doi
, “
Onsager's variational principle in soft matter
,” J. Phys.: Condens. Matter
23
(28
), 284118
(2011
).4.
G. F.
Teletzke
, Thin Liquid Films: Molecular Theory and Hydrodynamic Implications
(
University of Minnesota
, 1983
).5.
T.
Qian
,
X.-P.
Wang
, and
P.
Sheng
, “
A variational approach to moving contact line hydrodynamics
,” J. Fluid Mech.
564
, 333
–360
(2006
).6.
U.
Thiele
,
D. V.
Todorova
, and
H.
Lopez
, “
Gradient dynamics description for films of mixtures and suspensions: Dewetting triggered by coupled film height and concentration fluctuations
,” Phys. Rev. Lett.
111
(11
), 117801
(2013
).7.
C.
Huh
and
L. E.
Scriven
, “
Hydrodynamic model of steady movement of a solid/liquid/fluid contact line
,” J. Colloid Interface Sci.
35
(1
), 85
–101
(1971
).8.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,” Rev. Mod. Phys.
81
(2
), 739
(2009
).9.
O.
Voinov
, “
Inclination angles of the boundary in moving liquid layers
,” J. Appl. Mech. Tech. Phys.
18
(2
), 216
–222
(1977
).10.
R.
Cox
, “
The dynamics of the spreading of liquids on a solid surface. Part 1. viscous flow
,” J. Fluid Mech.
168
, 169
–194
(1986
).11.
E.
Lauga
,
M.
Brenner
, and
H.
Stone
, “
Microfluidics: The no-slip boundary condition
,” in Springer Handbooks
(
Springer
, 2007
), pp. 1219
–1240
.12.
D.
Ausserré
,
A.
Picard
, and
L.
Léger
, “
Existence and role of the precursor film in the spreading of polymer liquids
,” Phys. Rev. Lett.
57
(21
), 2671
(1986
).13.
M.
Boudoussier
, “
Dry spreading of polymer solutions
,” J. Phys.
48
(3
), 445
–455
(1987
).14.
A.
Cazabat
,
S.
Gerdes
,
M.
Valignat
, and
S.
Villette
, “
Dynamics of wetting: From theory to experiment
,” Interface Sci.
5
, 129
–139
(1997
).15.
P.-G.
De Gennes
, “
Wetting: Statics and dynamics
,” Rev. Mod. Phys.
57
(3
), 827
(1985
).16.
M. N.
Popescu
,
G.
Oshanin
,
S.
Dietrich
, and
A.
Cazabat
, “
Precursor films in wetting phenomena
,” J. Phys.: Condens. Matter
24
(24
), 243102
(2012
).17.
W.
Ren
and
W.
E
, “
Boundary conditions for the moving contact line problem
,” Phys. Fluids
19
(2
), 022101
(2007
).18.
J. H.
Snoeijer
and
B.
Andreotti
, “
Moving contact lines: Scales, regimes, and dynamical transitions
,” Annu. Rev. Fluid Mech.
45
, 269
–292
(2013
).19.
T. S.
Chan
,
C.
Kamal
,
J. H.
Snoeijer
,
J. E.
Sprittles
, and
J.
Eggers
, “
Cox–Voinov theory with slip
,” J. Fluid Mech.
900
, A8
(2020
).20.
J.
Eggers
, “
Toward a description of contact line motion at higher capillary numbers
,” Phys. Fluids
16
(9
), 3491
–3494
(2004
).21.
S.
Kalliadasis
and
H.-C.
Chang
, “
Apparent dynamic contact angle of an advancing gas–liquid meniscus
,” Phys. Fluids
6
(1
), 12
–23
(1994
).22.
J. A.
Diez
and
L.
Kondic
, “
Computing three-dimensional thin film flows including contact lines
,” J. Comput. Phys.
183
(1
), 274
–306
(2002
).23.
S. B. G.
O'Brien
and
L. W.
Schartz
, “
Theory and modeling of thin film flows
,” Encycl. Surface Colloid Sci.
1
, 5283
–5297
(2002
).24.
L.
Zhornitskaya
and
A. L.
Bertozzi
, “
Positivity-preserving numerical schemes for lubrication-type equations
,” SIAM J. Numer. Anal.
37
(2
), 523
–555
(1999
).25.
G.
Grün
and
M.
Rumpf
, “
Nonnegativity preserving convergent schemes for the thin film equation
,” Numer. Math.
87
, 113
–152
(2000
).26.
S.
Kalliadasis
,
C.
Bielarz
, and
G.
Homsy
, “
Steady free-surface thin film flows over topography
,” Phys. Fluids
12
(8
), 1889
–1898
(2000
).27.
U.
Thiele
,
L.
Brusch
,
M.
Bestehorn
, and
M.
Bär
, “
Modelling thin-film dewetting on structured substrates and templates: Bifurcation analysis and numerical simulations
,” Eur. Phys. J. E
11
, 255
–271
(2003
).28.
D.
Peschka
,
S.
Haefner
,
L.
Marquant
,
K.
Jacobs
,
A.
Münch
, and
B.
Wagner
, “
Signatures of slip in dewetting polymer films
,” Proc. Natl. Acad. Sci. U. S. A.
116
(19
), 9275
–9284
(2019
).29.
R.
Seemann
,
S.
Herminghaus
, and
K.
Jacobs
, “
Dewetting patterns and molecular forces: A reconciliation
,” Phys. Rev. Lett.
86
(24
), 5534
(2001
).30.
F.
Otto
, “
Lubrication approximation with prescribed nonzero contact angle
,” Commun. Partial Differential Equations
23
(11–12
), 2077
–2164
(1998
).31.
F.
Otto
,
T.
Rump
, and
D.
Slepcev
, “
Coarsening rates for a droplet model: Rigorous upper bounds
,” SIAM J. Math. Anal.
38
(2
), 503
–529
(2006
).32.
S.
Jachalski
,
R.
Huth
,
G.
Kitavtsev
,
D.
Peschka
, and
B.
Wagner
, “
Stationary solutions of liquid two-layer thin-film models
,” SIAM J. Appl. Math.
73
(3
), 1183
–1202
(2013
).33.
L.
Onsager
, “
Reciprocal relations in irreversible processes. I
,” Phys. Rev.
37
(4
), 405
(1931
).34.
M.-H.
Giga
,
A.
Kirshtein
, and
C.
Liu
, “
Variational modeling and complex fluids
,” Handbook Mathematical Analysis in Mechanics of Viscous Fluids
(Springer
, 2017
), pp. 1
–41
.35.
A.
Mielke
, “
A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems
,” Nonlinearity
24
(4
), 1329
(2011
).36.
L.
Giacomelli
and
F.
Otto
, “
Variatonal formulation for the lubrication approximation of the Hele-Shaw flow
,” Calculus Var. Partial Differential Equations
13
(3
), 377
–403
(2001
).37.
X.
Xu
,
Y.
Di
, and
M.
Doi
, “
Variational method for liquids moving on a substrate
,” Phys. Fluids
28
(8
), 087101
(2016
).38.
A.
Janečka
and
M.
Pavelka
, “
Non-convex dissipation potentials in multiscale non-equilibrium thermodynamics
,” Continuum Mech. Thermodyn.
30
(4
), 917
–941
(2018
).39.
L.
Schmeller
and
D.
Peschka
, “
Gradient flows for coupling order parameters and mechanics
,” SIAM J. Appl. Math.
83
(1
), 225
–253
(2023
).40.
D.
Peschka
, “
Variational approach to dynamic contact angles for thin films
,” Phys. Fluids
30
(8
), 082115
(2018
).41.
A.
Münch
,
B.
Wagner
, and
T. P.
Witelski
, “
Lubrication models with small to large slip lengths
,” J. Eng. Math.
53
, 359
–383
(2005
).42.
F.
Brochard
, “
Motions of droplets on solid surfaces induced by chemical or thermal gradients
,” Langmuir
5
(2
), 432
–438
(1989
).43.
D.
Peschka
, “
Thin-film free boundary problems for partial wetting
,” J. Comput. Phys.
295
, 770
–778
(2015
).44.
D.
Peschka
and
L.
Heltai
, “
Model hierarchies and higher-order discretisation of time-dependent thin-film free boundary problems with dynamic contact angle
,” J. Comput. Phys.
464
, 111325
(2022
).45.
D.
Peschka
, see https://github.com/dpeschka/thinfilm-freeboundary for “
Matlab Code thinfilm_clm_dual.m
” (2023
).46.
M.
Chiricotto
and
L.
Giacomelli
, “
Weak solutions to thin-film equations with contact-line friction
,” Interfaces Free Boundaries
19
(2
), 243
–271
(2017
).47.
L.
Giacomelli
,
M. V.
Gnann
,
H.
Knüpfer
, and
F.
Otto
, “
Well-posedness for the Navier-slip thin-film equation in the case of complete wetting
,” J. Differential Equations
257
(1
), 15
–81
(2014
).48.
H.
Knüpfer
, “
Well-posedness for the Navier slip thin-film equation in the case of partial wetting
,” Commun. Pure Appl. Math.
64
(9
), 1263
–1296
(2011
).49.
L.
Giacomelli
,
M. V.
Gnann
, and
D.
Peschka
, “
Droplet motion with contact-line friction: Long-time asymptotics in complete wetting
,” arXiv:2302.03005 (2023
).50.
D.
Peschka
, “
Numerics of contact line motion for thin films
,” IFAC-PapersOnLine
48
(1
), 390
–393
(2015
).51.
F.
Bernis
, “
Finite speed of propagation for thin viscous flows when
,” C. R. Acad. Sci., Ser. I
322
(12
), 1169
–1174
(1996
).52.
J.
Hulshof
and
A. E.
Shishkov
et al, “
The thin film equation with
: Finite speed of propagation in terms of the l1-norm
,” Adv. Differential Equations
3
(5
), 625
–642
(1998
).53.
R.
Dal Passo
,
L.
Giacomelli
, and
G.
Grün
, “
A waiting time phenomenon for thin film equations
,” Annali Sc. Norm. Super. Pisa-Classe Sci.
30
(2
), 437
–463
(2001
).54.
J. F.
Blowey
,
J. R.
King
, and
S.
Langdon
, “
Small-and waiting-time behavior of the thin-film equation
,” SIAM J. Appl. Math.
67
(6
), 1776
–1807
(2007
).55.
J.
Fischer
and
D.
Matthes
, “
The waiting time phenomenon in spatially discretized porous medium and thin film equations
,” SIAM J. Numer. Anal.
59
(1
), 60
–87
(2021
).56.
H.
Yin
,
D. N.
Sibley
,
U.
Thiele
,
A. J.
Archer
et al, “
Films, layers, and droplets: The effect of near-wall fluid structure on spreading dynamics
,” Phys. Rev. E
95
(2
), 023104
(2017
).57.
F.
Brochard-Wyart
,
J. M.
Di Meglio
,
D.
Quére
, and
P. G.
De Gennes
, “
Spreading of nonvolatile liquids in a continuum picture
,” Langmuir
7
(2
), 335
–338
(1991
).58.
For
and S > 0 the functional
is not lower semicontinuous for
. Let
such that
and define
and
, then
and thus
. For certain models this property is problematic, as the evolution develops intrinsic instabilities when obtaining energy by enlarging the wet substrate ω at no cost. This is resolved by requireing from
that
converges and
converges as a set so that
.
59.
R. G.
Badr
,
L.
Hauer
,
D.
Vollmer
, and
F.
Schmid
, “
Cloaking transition of droplets on lubricated brushes
,” J. Phys. Chem. B
126
(36
), 7047
–7058
(2022
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.