The phenomenon of a bubble bursting to generate droplets exists in industrial and environmental systems and has a subtle impact on our daily lives. A bubble generated by gas injection or heating rises to the free surface and undergoes floating, drainage, and eventually bursting processes to produce film and jet droplets. The interrelated processes make it difficult to understand the characteristics of a bubble burst. Thus, a summary of the individual stages of a single bubble from generation to burst is necessary. First, we describe the calculation method and simple expressions for the shape of a bubble floating on a free surface. Next, we discuss the bubble drainage model and its influencing factors as this directly determines the time evolution of the film thickness. As an essential factor that affects the film thickness, the bubble drainage time is defined as the bubble lifetime. We compare the bubble lifetime distributions in the published literature and explore the associated influencing factors. Then, we investigate the bubble bursting dynamics and focus on the bubble film opening process once a hole appears on its surface. As a legacy of bubble burst, we explore the production process, size, and number of film and jet droplets. Finally, we discuss the enrichment phenomenon and the enrichment factors of film and jet droplets when releasing particles entrained by droplets. This review considers a series of processes for bubble burst to generate droplets and concentrates on the mechanism and experimental correlations with a summary and future prospects.

1.
Q.
Sun
,
H.
Gu
,
H.
Chen
,
X.
Yu
, and
W.
Yin
, “
Study on transform mechanism between bubbling regimes and sizes at a submerged orifice in high temperature aerosol suspension
,”
Chem. Eng. Res. Des.
167
,
46
(
2021
).
2.
T.
Kudo
,
N.
Yamano
,
K.
Moriyama
,
Y.
Maruyama
, and
J.
Sugimoto
, in
Third International Conference on Containment Design and Operation, Toronto, Canada
(
Canadian Nuclear Society
,
1994
), p.
11
.
3.
S.
Poulain
,
G.
Guenoun
,
S.
Gart
,
W.
Crowe
, and
S.
Jung
, “
Particle motion induced by bubble cavitation
,”
Phys. Rev. Lett.
114
,
214501
(
2015
).
4.
Y.
Toba
, “
Drop production by bursting of air bubbles on the sea surface. II. Theoretical study on the shape of floating bubbles
,”
J. Oceanogr. Soc. Jpn.
15
,
121
(
1959
).
5.
G.
Debregeas
,
P. G.
De Gennes
, and
F.
Brochard-Wyart
, “
The life and death of ‘bare’ viscous bubbles
,”
Science
279
,
1704
(
1998
).
6.
H.
Lhuissier
and
E.
Villermaux
, “
Bursting bubble aerosols
,”
J. Fluid Mech.
696
,
5
(
2012
).
7.
S.
Poulain
,
E.
Villermaux
, and
L.
Bourouiba
, “
Ageing and burst of surface bubbles
,”
J. Fluid Mech.
851
,
636
(
2018
).
8.
H.
Lhuissier
and
E.
Villermaux
, “
Bursting bubbles
,”
Phys. Fluids
21
,
091111
(
2009
).
9.
T.
Li
,
A. M.
Zhang
,
S. P.
Wang
,
S.
Li
, and
W. T.
Liu
, “
Aging continuous time random walks in fluids
,”
Phys. Fluids
31
,
072004
(
2019
).
10.
J. M.
Gordillo
and
J.
Rodríguez-Rodríguez
, “
Capillary waves control the ejection of bubble bursting jets
,”
J. Fluid Mech.
867
,
556
(
2019
).
11.
C. F.
Brasz
,
C. T.
Bartlett
,
P. L. L.
Walls
,
E. G.
Flynn
,
Y. E.
Yu
, and
J. C.
Bird
, “
Minimum size for the top jet drop from a bursting bubble
,”
Phys. Rev. Fluids
3
,
074001
(
2018
).
12.
S.-C.
Georgescu
,
J.-L.
Achard
, and
E.
Canot
, “
Jet drops ejection in bursting gas bubble processes
,”
Eur. J. Mech.
21
,
265
(
2002
).
13.
T.
Séon
and
G.
Liger-Belair
, “
Effervescence in champagne and sparkling wines: From bubble bursting to droplet evaporation
,”
Eur. Phys. J. Spec. Top.
226
,
117
(
2017
).
14.
J. C.
Bird
,
R.
De Ruiter
,
L.
Courbin
, and
H. A.
Stone
, “
Daughter bubble cascades produced by folding of ruptured thin films
,”
Nature
465
,
759
(
2010
).
15.
A. A.
Dasouqi
,
G. S.
Yeom
, and
D. W.
Murphy
, “
Bursting bubbles and the formation of gas jets and vortex rings
,”
Exp. Fluids
62
,
1
(
2021
).
16.
Y.
Han
,
X.
Xu
,
F.
Liu
,
W.
Wei
, and
Z.
Liu
, “
Study of the theory of microbubble bursting to obtain bio-inspired alginate nanoparticles
,”
Colloids Surf. A
591
,
124494
(
2020
).
17.
H.
Zhang
and
Q.
Liu
, “
Numerical investigation on performance of moisture separator by Lagrangian–Eulerian strategy: Physical mechanisms, theoretical models, and advanced algorithms
,”
Ann. Nucl. Energy
137
,
107081
(
2020
).
18.
M. K.
Koch
,
A.
Voßnacke
,
J.
Starflinger
,
W.
Schütz
, and
H.
Unger
, “
Radionuclide re-entrainment at bubbling water pool surfaces
,”
J. Aerosol Sci.
31
,
1015
(
2000
).
19.
Q.
Ma
,
Y.
Zhou
,
H.
Gu
,
Z.
Sun
,
L.
Li
, and
X.
Cui
, “
Experimental research on aerosol deposition phenomenon in single-sized rising bubble
,”
Prog. Nucl. Energy
154
,
104456
(
2022
).
20.
M.
Dapper
,
H.-J.
Wagner
, and
M. K.
Koch
, in
International Conference on Nuclear Engineering
(
ASME
,
2008
), pp.
309
314
.
21.
Q.
Ma
,
Y.
Zhou
,
H.
Gu
,
Z.
Sun
,
X.
Yu
, and
H.
Liang
, “
Experimental research on aerosol scrubbing characteristics under steam-air mixture submerged jet condition
,”
Prog. Nucl. Energy
159
,
104645
(
2023
).
22.
K.
Fujiwara
,
W.
Kikuchi
,
Y.
Nakamura
,
T.
Yuasa
,
S.
Saito
,
A.
Kaneko
, and
Y.
Abe
, “
Experimental study of single-bubble behavior containing aerosol during pool scrubbing
,”
Nucl. Eng. Des.
348
,
159
(
2019
).
23.
Q.
Ma
,
Y.
Zhou
,
H.
Gu
,
Z.
Sun
,
H.
Liang
, and
H.
Zhou
, “
Experimental research on aerosol scrubbing characteristics in the submerged jet under high pool pressure
,”
Powder Technol.
415
,
118170
(
2023
).
24.
M.
Ouallal
,
S.
Leyer
, and
S.
Gupta
, “
Literature survey of droplet entrainment from water pools
,”
Nucl. Eng. Des.
379
,
111188
(
2021
).
25.
E. R.
Lewis
,
S. E.
Schwartz
,
E. R.
Lewis
,
R.
Lewis
,
K. E.
Karlstrom
, and
S. E.
Schwartz
,
Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models
(
American Geophysical Union
,
2004
).
26.
F.
Veron
, “
Ocean spray
,”
Annu. Rev. Fluid Mech.
47
,
507
(
2015
).
27.
A.
Berny
,
S.
Popinet
,
T.
Séon
, and
L.
Deike
, “
Statistics of jet drop production
,”
Geophys. Res. Lett.
48
,
e2021GL092919
, https://doi.org/10.1029/2021GL092919 (
2021
).
28.
C. T.
Nguyen
,
H. M.
Gonnermann
,
Y.
Chen
,
C.
Huber
,
A. A.
Maiorano
,
A.
Gouldstone
, and
J.
Dufek
, “
Film drainage and the lifetime of bubbles
,”
Geochem., Geophys., Geosyst.
14
,
3616
, https://doi.org/10.1002/ggge.20198 (
2013
).
29.
S.
Frazier
,
X.
Jiang
, and
J. C.
Burton
, “
How to make a giant bubble
,”
Phys. Rev. Fluids
5
,
013304
(
2020
).
30.
S.
Balachandar
,
S.
Zaleski
,
A.
Soldati
,
G.
Ahmadi
, and
L.
Bourouiba
, “
Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines
,”
Int. J. Multiphase Flow
132
,
103439
(
2020
).
31.
J.
Rahlff
, “
The Virioneuston: A review on viral–bacterial associations at air–water interfaces
,”
Viruses
11
,
191
(
2019
).
32.
O.
McRae
,
K. R.
Mead
, and
J. C.
Bird
, “
Viscous wrinkling of nonuniform sheets
,”
Phys. Rev. Fluids
6
,
L031601
(
2021
).
33.
L.
Bourouiba
, “
The fluid dynamics of disease transmission
,”
Annu. Rev. Fluid Mech.
53
,
473
(
2021
).
34.
D.
Tammaro
,
V. C.
Suja
,
A.
Kannan
,
L. D.
Gala
,
E.
Di Maio
,
G. G.
Fuller
, and
P. L.
Maffettone
,
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2105058118
(
2021
).
35.
G.
Liger-Belair
, “
Effervescence in champagne and sparkling wines: From grape harvest to bubble rise
,”
Eur. Phys. J. Spec. Top.
226
,
3
(
2017
).
36.
G.
Rage
,
O.
Atasi
,
M. M.
Wilhelmus
,
J. F.
Hernández-Sánchez
,
B.
Haut
,
B.
Scheid
,
D.
Legendre
, and
R.
Zenit
, “
Bubbles determine the amount of alcohol in Mezcal
,”
Sci. Rep.
10
(
1
),
11014
(
2020
).
37.
P. L. L.
Walls
,
J. C.
Bird
, and
L.
Bourouiba
, “
Moving with bubbles: A review of the interactions between bubbles and the microorganisms that surround them
,”
Integr. Comput. Biol.
54
,
1014
(
2014
).
38.
B. A.
Puthenveettil
,
A.
Saha
,
S.
Krishnan
, and
E. J.
Hopfinger
, “
Shape parameters of a floating bubble
,”
Phys. Fluids
30
,
112105
(
2018
).
39.
P. D.
Howell
, “
The draining of a two-dimensional bubble
,”
J. Eng. Math.
35
,
251
(
1999
).
40.
J.
Miguet
,
F.
Rouyer
, and
E.
Rio
, “
The life of a surface bubble
,”
Molecules
26
,
1317
(
2021
).
41.
H.
Kočárková
,
F.
Rouyer
, and
F.
Pigeonneau
, “
Film drainage of viscous liquid on top of bare bubble: Influence of the Bond number
,”
Phys. Fluids
25
,
022105
(
2013
).
42.
M. A. C.
Teixeira
,
S.
Arscott
,
S. J.
Cox
, and
P. I. C.
Teixeira
, “
What is the shape of an air bubble on a liquid surface?
,”
Langmuir
31
,
13708
(
2015
).
43.
G. S.
Yeom
, “
Correlations and asymptotic behaviors of the shape parameters of floating bubbles using an improved numerical procedure
,”
Appl. Sci.
12
,
1804
(
2022
).
44.
W. R.
Ke
,
Y. M.
Kuo
,
C. W.
Lin
,
S. H.
Huang
, and
C. C.
Chen
, “
Characterization of aerosol emissions from single bubble bursting
,”
J. Aerosol Sci.
109
,
1
(
2017
).
45.
J.
Miguet
,
M.
Pasquet
,
F.
Rouyer
,
Y.
Fang
, and
E.
Rio
, “
Stability of big surface bubbles: Impact of evaporation and bubble size
,”
Soft Matter
16
,
1082
(
2020
).
46.
T.
Trittel
,
T.
John
,
K.
Tsuji
, and
R.
Stannarius
, “
Rim instability of bursting thin smectic films
,”
Phys. Fluids
25
,
052106
(
2013
).
47.
L.
Champougny
,
M.
Roché
,
W.
Drenckhan
, and
E.
Rio
, “
Life and death of not so ‘bare’ bubbles
,”
Soft Matter
12
,
5276
(
2016
).
48.
A. B.
Pandit
and
J. F.
Davidson
, “
Hydrodynamics of the rupture of thin liquid films
,”
J. Fluid Mech.
212
,
11
(
1990
).
49.
O. D.
Botta
,
I.
Magos
, and
C.
Balan
, “
Experimental study on the formation and break-up of fluid bubbles
,”
INCAS Bull.
12
,
27
(
2020
).
50.
N. A.
Di Spirito
,
S.
Mirzaagha
,
E.
Di Maio
,
N.
Grizzuti
, and
R.
Pasquino
, “
Bubble rupture and bursting velocity of complex fluids
,”
Langmuir
38
,
13429
(
2022
).
51.
D. E.
Spiel
, “
Acoustical measurements of air bubbles bursting at a water surface: Bursting bubbles as Helmholtz resonators
,”
J. Geophys. Res.
97
,
11443
, https://doi.org/10.1029/92JC00982 (
1992
).
52.
T.
Divoux
,
V.
Vidal
,
F.
Melo
, and
J. C.
Géminard
, “
Acoustic emission associated with the bursting of a gas bubble at the free surface of a non-Newtonian fluid
,”
Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys
77
,
056310
(
2008
).
53.
M.
Poujol
,
R.
Wunenburger
,
F.
Ollivier
,
A.
Antkowiak
, and
J.
Pierre
, “
Sound of effervescence
,”
Phys. Rev. Fluids
6
,
13604
(
2021
).
54.
G. B.
Deane
, “
Determining the bubble cap film thickness of bursting bubbles from their acoustic emissions
,”
J. Acoust. Soc. Am.
133
,
EL69
(
2013
).
55.
A.
Nikolov
and
D.
Wasan
, “
Air bubble bursting phenomenon at the air–water interface monitored by the piezoelectric-acoustic method
,”
Adv. Colloid Interface Sci
272
,
101998
(
2019
).
56.
J. W.
Montgomery
III
, “Calibrating Schlieren imaging for understanding local film deformation for a range of wetting and intrusions in soap films,” M.S. dissertation, Massachusetts Institute of Technology,
2020
.
57.
Y. A.
Peschenyuk
,
A. A.
Semenov
,
G. Y.
Ayvazyan
, and
E. Y.
Gatapova
, “
The final stage of droplet evaporation on black silicon by schlieren technique with a graded filter
,”
Exp. Fluids
64
(
1
),
1
(
2023
).
58.
J.
Kim
,
S.
Lee
, and
Y. S.
Joung
, “
Schlieren imaging for the visualization of particles entrapped in bubble films
,”
J. Colloid Interface Sci.
570
,
52
(
2020
).
59.
A.
Eri
and
K.
Okumura
, “
Lifetime of a two-dimensional air bubble
,”
Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.
76
,
060601
(
2007
).
60.
C.
Bartlett
,
A. T.
Oratis
,
M.
Santin
, and
J. C.
Bird
, “
Universal non-monotonic drainage in large bare viscous bubbles
,”
Nat. Commun.
14
,
877
(
2023
).
61.
D. H.
Michael
, “
Meniscus stability
,”
Annu. Rev. Fluid Mech.
13
,
189
(
1981
).
62.
J. J.
Bikerman
,
Physical Surfaces
(
Elsevier
,
2012
).
63.
J.
Miguet
,
M.
Pasquet
,
F.
Rouyer
,
Y.
Fang
, and
E.
Rio
, “
Marginal regeneration-induced drainage of surface bubbles
,”
Phys. Rev. Fluids
6
,
L101601
(
2021
).
64.
P. D.
Howell
and
H. A.
Stone
, “
On the absence of marginal pinching in thin free films
,”
Eur. J. Appl. Math.
16
,
569
(
2005
).
65.
C.
Isenberg
,
The Science of Soap Films and Soap Bubbles
(
Courier Dover Publications
,
1992
).
66.
M.
Pasquet
,
F.
Boulogne
,
J.
Sant-Anna
,
F.
Restagno
, and
E.
Rio
, “
The impact of physical-chemistry on film thinning in surface bubbles
,”
Soft Matter
18
,
4536
(
2022
).
67.
S.
Poulain
and
L.
Bourouiba
, “
Biosurfactants change the thinning of contaminated bubbles at bacteria-laden water interfaces
,”
Phys. Rev. Lett.
121
,
204502
(
2018
).
68.
M. S.
Bhamla
,
C. E.
Giacomin
,
C.
Balemans
, and
G. G.
Fuller
, “
Influence of interfacial rheology on drainage from curved surfaces
,”
Soft Matter
10
,
6917
(
2014
).
69.
O.
Atasi
,
D.
Legendre
,
B.
Haut
,
R.
Zenit
, and
B.
Scheid
, “
Lifetime of surface bubbles in surfactant solutions
,”
Langmuir
36
,
7749
(
2020
).
70.
E. A.
Van Nierop
,
B.
Scheid
, and
H. A.
Stone
, “
On the thickness of soap films: An alternative to Frankel's law
,”
J. Fluid Mech.
602
,
119
(
2008
).
71.
S.
Nath
,
G.
Ricard
,
P.
Jin
,
A.
Bouillant
, and
D.
Quéré
, “
Thermal Marangoni bubbles
,”
Soft Matter
18
,
7422
(
2022
).
72.
F.
Boulogne
,
F.
Restagno
, and
E.
Rio
, “
Measurement of the temperature decrease in evaporating soap films
,”
Phys. Rev. Lett.
129
,
268001
(
2022
).
73.
S. F.
Ahmadi
,
S.
Nath
,
C. M.
Kingett
,
P.
Yue
, and
J. B.
Boreyko
, “
How soap bubbles freeze
,”
Nat. Commun.
10
,
2531
(
2019
).
74.
L.
Champougny
,
J.
Miguet
,
R.
Henaff
,
F.
Restagno
,
F.
Boulogne
, and
E.
Rio
, “
Influence of evaporation on soap film rupture
,”
Langmuir
34
,
3221
(
2018
).
75.
S. R.
Burger
and
D. C.
Blanchard
, “
The persistence of air bubbles at a seawater surface
,”
J. Geophys. Res.: Ocean
88
,
7724
, https://doi.org/10.1029/JC088iC12p07724 (
1983
).
76.
J.
Miguet
,
Y.
Fang
,
F.
Rouyer
, and
E.
Rio
, “
How does the presence of stevia glycosides impact surface bubbles stability?
,”
Colloids Surf. A
603
,
125093
(
2020
).
77.
E.
Lorenceau
and
F.
Rouyer
, “
Lifetime of a single bubble on the surface of a water and ethanol bath
,”
Phys. Rev. Fluids
5
,
1
(
2020
).
78.
S.
Natsui
,
R.
Nashimoto
,
D.
Nakajima
,
T.
Kikuchi
, and
R. O.
Suzuki
, “
Column and film lifetimes in bubble-induced two-liquid flow
,”
Phys. Rev. E
97
,
063603
(
2018
).
79.
D.
Langevin
, “
Rheology of adsorbed surfactant monolayers at fluid surfaces
,”
Annu. Rev. Fluid Mech.
46
,
47
(
2014
).
80.
R. J.
Pugh
, “
Foaming, foam films, antifoaming and defoaming
,”
Adv. Colloid Interface Sci.
64
,
67
(
1996
).
81.
É.
Reyssat
and
D.
Quéré
, “
Bursting of a fluid film in a viscous environment
,”
Europhys. Lett.
76
,
236
(
2006
).
82.
J.
Yang
,
A.
Wang
, and
Q.
Zheng
, “
Ultra-long lifetime water bubbles stabilized by negative pressure generated between microparticles
,”
Soft Matter
13
,
8202
(
2017
).
83.
M. J.
Rosen
and
J. T.
Kunjappu
,
Surfactants and Interfacial Phenomena
(
John Wiley & Sons
,
2012
).
84.
C. P.
Baryiames
,
P.
Garrett
, and
C. R.
Baiz
, “
Bursting the bubble: A molecular understanding of surfactant-water interfaces
,”
J. Chem. Phys.
154
,
170901
(
2021
).
85.
L. L.
Schramm
,
Emulsions, Foams, Suspensions, and Aerosols: Microscience and Applications
(
John Wiley & Sons
,
2014
).
86.
E.
Rio
and
A. L.
Biance
, “
Thermodynamic and mechanical timescales involved in foam film rupture and liquid foam coalescence
,”
ChemPhysChem
15
,
3692
(
2014
).
87.
T.
Tamura
,
Y.
Kaneko
, and
M.
Nikaido
, “
Stability factors of foam film in contrast to fluctuation induced by humidity reduction
,”
J. Colloid Interface Sci.
190
,
61
(
1997
).
88.
M.
Saad Bhamla
,
C.
Chai
,
M. A.
Àlvarez-Valenzuela
,
J.
Tajuelo
, and
G. G.
Fuller
, “
Interfacial mechanisms for stability of surfactant-laden films
,”
PLoS One
12
,
e0175753
(
2017
).
89.
D. E.
Spiel
, “
On the births of film drops from bubbles bursting on seawater surfaces
,”
J. Geophys. Res.: Ocean
103
,
24907
, https://doi.org/10.1029/98JC02233 (
1998
).
90.
S.
Mawet
,
H.
Caps
, and
S.
Dorbolo
, “
Deformation of soap bubbles in uniform electric fields
,”
Phys. Rev. Fluids
6
,
043603
(
2021
).
91.
A.
Vrij
and
J. T. G.
Overbeek
, “
Rupture of thin liquid films due to spontaneous fluctuations in thickness
,”
J. Am. Chem. Soc.
90
,
3074
(
1968
).
92.
S. T.
Tobin
,
A. J.
Meagher
,
B.
Bulfin
,
M.
Möbius
, and
S.
Hutzler
, “
A public study of the lifetime distribution of soap films
,”
Am. J. Phys.
79
,
819
(
2011
).
93.
M. Y.
Qian
and
J. H.
He
, “
Collection of polymer bubble as a nanoscale membrane
,”
Surf. Interfaces
28
,
101665
(
2022
).
94.
G. I.
Taylor
and
D. H.
Michael
, “
On making holes in a sheet of fluid
,”
J. Fluid Mech.
58
,
625
(
1973
).
95.
X.
Li
,
S. I.
Karakashev
,
G. M.
Evans
, and
P.
Stevenson
, “
Effect of environmental humidity on static foam stability
,”
Langmuir
28
,
4060
(
2012
).
96.
P.
Shah
,
E.
Ward
,
S.
Arora
, and
M. M.
Driscoll
, “
Rupture dynamics of flat colloidal films
,”
Phys. Rev. Fluids
8
,
24002
(
2023
).
97.
C.
Vernay
,
L.
Ramos
, and
C.
Ligoure
, “
Bursting of dilute emulsion-based liquid sheets driven by a Marangoni effect
,”
Phys. Rev. Lett.
115
,
2
(
2015
).
98.
B.
Neél
and
E.
Villermaux
, “
The spontaneous puncture of thick liquid films
,”
J. Fluid Mech.
838
,
192
(
2018
).
99.
Y.
Zhang
,
C.
Liu
,
X.
Tang
,
X.
Dong
,
T.
He
,
H.
Wang
, and
D.
Zang
, “
Dynamics of rising bubbles and their impact with viscoelastic fluid interfaces
,”
Polymers
14
,
2948
(
2022
).
100.
C.
Gonzalez Viejo
,
D. D.
Torrico
,
F. R.
Dunshea
, and
S.
Fuentes
, “Bubbles, foam formation, stability and consumer perception of carbonated drinks: A review of current, new and emerging technologies for rapid assessment and control,”
Foods
8
(
12
),
596
(
2019
).
101.
B.
Jachimska
,
P.
Warszyñski
, and
K.
Małysa
, “
Effect of motion on lifetime of bubbles at n-butanol solution surface
,”
Colloids Surf. A
143
,
429
(
1998
).
102.
D.
Yu
,
X.
Wang
, and
L. T.
Lim
, “
Investigation of the factors affecting foamability and foam stability of cold brew coffee
,”
J. Sci. Food Agric.
102
,
5875
(
2022
).
103.
H. P.
Tran
,
M.
Arangalage
,
L.
Jørgensen
,
N.
Passade-Boupat
,
F.
Lequeux
, and
L.
Talini
, “
Understanding frothing of liquid mixtures: A surfactant like effect at the origin of enhanced liquid film lifetimes
,”
Phys. Rev. Lett.
125
,
178002
(
2020
).
104.
H. P.
Tran
,
N.
Passade-Boupat
,
F.
Lequeux
, and
L.
Talini
, “
Mechanisms ruling the lifetimes of films of liquid mixtures
,”
J. Fluid Mech.
944
, A
1
(
2022
).
105.
D.
Li
and
J. C.
Slattery
, “
Experimental support for analyses of coalescence
,”
AIChE J.
34
,
862
(
1988
).
106.
P.
Ghosh
, “
Coalescence of air bubbles at air–water interface
,”
Chem. Eng. Res. Des.
82
,
849
(
2004
).
107.
M. D.
Anguelova
and
P.
Huq
, “
Effects of salinity on surface lifetime of large individual bubbles
,”
J. Mar. Sci. Eng.
5
,
41
(
2017
).
108.
T.
Uchida
,
S.
Liu
,
M.
Enari
,
S.
Oshita
,
K.
Yamazaki
, and
K.
Gohara
, “
Effect of NaCl on the lifetime of micro- and nanobubbles
,”
Nanomaterials
6
,
31
(
2016
).
109.
Y.
Pan
,
I.
Gresham
,
G.
Bournival
,
S.
Prescott
, and
S.
Ata
, “
Synergistic effects of frothers, collector and salt on bubble stability
,”
Powder Technol.
397
,
117028
(
2022
).
110.
B.
Haffner
,
J.
Lalieu
,
P.
Richmond
, and
S.
Hutzler
, “
Can soap films be used as models for mortality studies?
,”
Physica A
508
,
461
(
2018
).
111.
X.
Yu
,
H.
Gu
,
W.
Yin
, and
Q.
Sun
, “
Bubble bursting and drainage characteristics at the free surface of a liquid pool with an aerosol
,”
Sci. Technol. Nucl. Install.
2020
,
8829074
.
112.
S. I.
Karakashev
,
M.
Firouzi
,
J.
Wang
,
L.
Alexandrova
, and
A. V.
Nguyen
, “
On the stability of thin films of pure water
,”
Adv. Colloid Interface Sci.
268
,
82
(
2019
).
113.
S.
Sofieva
,
E.
Asmi
,
N. S.
Atanasova
,
A. E.
Heikkinen
,
E.
Vidal
,
J.
Duplissy
,
M.
Romantschuk
,
R.
Kouznetsov
,
J.
Kukkonen
,
D. H.
Bamford
,
A. P.
Hyvärinen
, and
M.
Sofiev
, “
Effects of temperature and salinity on bubble-bursting aerosol formation simulated with a bubble-generating chamber
,”
Atmos. Meas. Tech.
15
,
6201
(
2022
).
114.
Q. A.
Zheng
,
V.
Klemas
, and
Y. H. L.
Hsu
, “
Laboratory measurement of water surface bubble life time
,”
J. Geophys. Res.
88
,
701
, https://doi.org/10.1029/JC088iC01p00701 (
1983
).
115.
M.
Struthwolf
and
D. C.
Blanchard
, “
The residence time of air bubbles <400 μm diameter at the surface of distilled water and seawater
,”
Tellus B
36
,
294
(
1984
).
116.
T.
Vehmas
and
L.
Makkonen
, “
Metastable nanobubbles
,”
ACS Omega
6
,
8021
(
2021
).
117.
W.
Wang
,
F.
Lin
,
X.
Wei
,
J.
Zou
, and
S.
Dorbolo
, “
Arbitrary extension of the antibubble lifetime
,”
Phys. Rev. Fluids
7
,
L061601
(
2022
).
118.
Y.
Vitry
,
S.
Dorbolo
,
J.
Vermant
, and
B.
Scheid
, “
Controlling the lifetime of antibubbles
,”
Adv. Colloid Interface Sci.
270
,
73
(
2019
).
119.
J. F.
Lawless
,
Statistical Models and Methods for Lifetime Data
(
John Wiley & Sons
,
2011
).
120.
G. E.
Charles
and
S. G.
Mason
, “
The coalescence of liquid drops with flat liquid/liquid interfaces
,”
J. Colloid Sci.
15
,
236
(
1960
).
121.
T.
Gilet
,
T.
Scheller
,
E.
Reyssat
,
N.
Vandewalle
, and
S.
Dorbolo
, “
How long will a bubble be?
,” arXiv:0709.4412 (
2007
).
122.
V.
C. Suja
,
M.
Rodríguez-Hakim
,
J.
Tajuelo
, and
G. G.
Fuller
, “
Single bubble and drop techniques for characterizing foams and emulsions
,”
Adv. Colloid Interface Sci.
286
,
102295
(
2020
).
123.
L.
Rayleigh
, “
Some applications of photography
,”
Nature
44
,
249
(
1891
).
124.
W. E.
Ranz
, “
Some experiments on the dynamics of liquid films
,”
J. Appl. Phys.
30
,
1950
(
1959
).
125.
F. E. C.
Culick
, “
Comments on a ruptured soap film
,”
J. Appl. Phys.
31
,
1128
(
1960
).
126.
G. I.
Taylor
, “
The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets
,”
Proc. R. Soc. London, Ser. A
253
,
313
(
1959
).
127.
C.
Cohen
,
B. D.
Texier
,
E.
Reyssat
,
J. H.
Snoeijer
,
D.
Quéré
, and
C.
Clanet
, “
On the shape of giant soap bubbles
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
2515
(
2017
).
128.
M.
Murano
and
K.
Okumura
, “
Bursting dynamics of viscous film without circular symmetry: The effect of confinement
,”
Phys. Rev. Fluids
3
,
031601
(
2018
).
129.
J.
Bico
, “
Cracks in bursting soap films
,”
J. Fluid Mech.
778
,
1
(
2015
).
130.
P. C.
Petit
,
M.
Le Merrer
, and
A.-L.
Biance
, “
Holes and cracks in rigid foam films
,”
J. Fluid Mech.
774
,
304
(
2015
).
131.
D.
Tammaro
,
R.
Pasquino
,
M. M.
Villone
,
G.
D'Avino
,
V.
Ferraro
,
E.
Di Maio
,
A.
Langella
,
N.
Grizzuti
, and
P. L.
Maffettone
, “
Elasticity in bubble rupture
,”
Langmuir
34
,
5646
(
2018
).
132.
A. T.
Oratis
,
J. W. M.
Bush
,
H. A.
Stone
, and
J. C.
Bird
, “
A new wrinkle on liquid sheets: Turning the mechanism of viscous bubble collapse upside down
,”
Science
369
,
685
(
2020
).
133.
F.
MacIntyre
, “
Flow patterns in breaking bubbles
,”
J. Geophys. Res.
77
,
5211
, https://doi.org/10.1029/JC077i027p05211 (
1972
).
134.
D. E.
Spiel
, “
A hypothesis concerning the peak in film drop production as a function of bubble size
,”
J. Geophys. Res.: Ocean
102
,
1153
, https://doi.org/10.1029/96JC03069 (
1997
).
135.
S.
Hayami
and
Y.
Toba
, “
Drop production by bursting of air bubbles on the sea surface. I. Experiments at still sea water surface
,”
J.
Oceanogr
.
Soc. Jpn.
14
,
145
(
1958
).
136.
F.
Müller
,
U.
Kornek
, and
R.
Stannarius
, “
Experimental study of the bursting of inviscid bubbles
,”
Phys. Rev. E
75
,
65302
(
2007
).
137.
V.
Sanjay
,
U.
Sen
,
P.
Kant
, and
D.
Lohse
, “
Taylor–Culick retractions and the influence of the surroundings
,” arXiv:2202.13400 (
2022
).
138.
H. N.
Mullagura
and
S.
Dash
, “
Bubble-induced rupture of droplets on hydrophobic and lubricant-impregnated surfaces
,”
Langmuir
36
,
8858
(
2020
).
139.
D. C.
Blanchard
and
L. D.
Syzdek
, “
Film drop production as a function of bubble size
,”
J. Geophys. Res.: Ocean
93
,
3649
, https://doi.org/10.1029/JC093iC04p03649 (
1988
).
140.
P. L. L.
Walls
,
L.
Henaux
, and
J. C.
Bird
, “
Jet drops from bursting bubbles: How gravity and viscosity couple to inhibit droplet production
,”
Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.
92
,
021002
(
2015
).
141.
Y.
Wang
and
L.
Bourouiba
, “
Unsteady sheet fragmentation: Droplet sizes and speeds
,”
J. Fluid Mech.
848
,
946
(
2018
).
142.
J.
Eggers
and
E.
Villermaux
, “
Physics of liquid jets
,”
Rep. Prog. Phys.
71
,
036601
(
2008
).
143.
N.
Ashgriz
,
Handbook of Atomization and Sprays: Theory and Applications
(
Springer Science & Business Media
,
2011
).
144.
J.
Feng
,
M.
Roché
,
D.
Vigolo
,
L. N.
Arnaudov
,
S. D.
Stoyanov
,
T. D.
Gurkov
,
G. G.
Tsutsumanova
, and
H. A.
Stone
, “
Nanoemulsions obtained via bubble-bursting at a compound interface
,”
Nat. Phys.
10
,
606
(
2014
).
145.
D. C.
Blanchard
and
L. D.
Syzdek
, “
Electrostatic collection of jet and film drops
,”
Limnol. Oceanogr.
20
,
762
(
1975
).
146.
D. E.
Spiel
, “
The sizes of the jet drops produced by air bubbles bursting on sea- and fresh-water surfaces
,”
Tellus B
46
,
325
(
1994
).
147.
N.
Jiang
,
X.
Yu
,
W.
Qi
, and
Z.
Wang
, “Review of measurement method for bubble rupture and entrainment behavior,”
At. Energy Sci. Technol.
54
,
1617
(
2020
).
148.
K.
Kamamoto
,
A.
Kiyama
,
Y.
Tagawa
, and
X.
Zhang
, “
Ouzo column under impact: Formation of emulsion jet and oil-lubricated droplet
,”
Langmuir
37
,
2056
(
2021
).
149.
S. R.
Strader
, “An examination of the CAR Group’s processing of PMS optical array probe data through 1997 (PMS OAP-200X and OAP-2D-C)” (
1998
).
150.
M. E.
Teske
,
H. W.
Thistle
,
J.
Hewitt
, and
I. W.
Kirk
, “Conversion of droplet size distributions from PMS optical array probe to Malvern laser diffraction,”
At. Sprays
12
(
1–3
),
267
281
(
2002
).
151.
J. S.
Lee
,
B. M.
Weon
,
S. J.
Park
,
J. H.
Je
,
K.
Fezzaa
, and
W. K.
Lee
, “
Size limits the formation of liquid jets during bubble bursting
,”
Nat. Commun.
2
,
367
(
2011
).
152.
Y.
Wang
,
R.
Dandekar
,
N.
Bustos
,
S.
Poulain
, and
L.
Bourouiba
, “
Universal rim thickness in unsteady sheet fragmentation
,”
Phys. Rev. Lett.
120
,
204503
(
2018
).
153.
X.
Yu
,
H.
Gu
,
W.
Yin
,
Q.
Sun
, and
Y.
Zhou
, “
Experimental research on droplets releasing characteristics of the bubble bursting behavior at a free surface with an aerosol
,”
Ann. Nucl. Energy
173
,
109109
(
2022
).
154.
F. J.
Resch
,
J. S.
Darrozes
, and
G. M.
Afeti
, “
Marine liquid aerosol production from bursting of air bubbles
,”
J. Geophys. Res.
91
,
1019
, https://doi.org/10.1029/JC091iC01p01019 (
1986
).
155.
A.
Günther
,
S.
Wälchli
, and
P. R.
von Rohr
, “
Droplet production from disintegrating bubbles at water surfaces. Single vs. multiple bubbles
,”
Int. J. Multiphase Flow
29
,
795
(
2003
).
156.
K. T.
Müller
,
L.
Holappa
, and
D.
Neuschütz
, “
Control of ejections caused by bubble bursting in steelmaking processes
,”
Steel Res.
74
,
61
(
2003
).
157.
J.
Liu
,
S. J.
Kim
,
X.
Gao
,
S.
Ueda
, and
S. Y.
Kitamura
, “
Metal emulsion in Sn alloy/oxide system by bottom gas injection
,”
ISIJ Int.
57
,
615
(
2017
).
158.
A. G.
Guézennec
,
J. C.
Huber
,
F.
Patisson
,
P.
Sessiecq
,
J. P.
Birat
, and
D.
Ablitzer
, “
Dust formation in electric arc furnace: Birth of the particles
,”
Powder Technol.
157
,
2
(
2005
).
159.
A. M.
Gañán-Calvo
, “
Scaling laws of top jet drop size and speed from bubble bursting including gravity and inviscid limit
,”
Phys. Rev. Fluids
3
,
091601
(
2018
).
160.
L.
Deike
,
E.
Ghabache
,
G.
Liger-Belair
,
A. K.
Das
,
S.
Zaleski
,
S.
Popinet
, and
T.
Séon
, “
Dynamics of jets produced by bursting bubbles
,”
Phys. Rev. Fluids
3
(
1
),
13603
(
2018
).
161.
F. J.
Blanco-Rodríguez
and
J. M.
Gordillo
, “
On the sea spray aerosol originated from bubble bursting jets
,”
J. Fluid Mech.
886
,
R2
(
2020
).
162.
B. W.
Zeff
,
B.
Kleber
,
J.
Fineberg
, and
D. P.
Lathrop
, “
Singularity dynamics in curvature collapse and jet eruption on a fluid surface
,”
Nature
403
,
401
(
2000
).
163.
J.
Zhang
,
J. J. J.
Chen
, and
N.
Zhou
, “
Characteristics of jet droplet produced by bubble bursting on the free liquid surface
,”
Chem. Eng. Sci.
68
,
151
(
2012
).
164.
R.
Mead-Hunter
,
M. M.
Gumulya
,
A. J. C.
King
, and
B. J.
Mullins
, “
Ejection of droplets from a bursting bubble on a free liquid surface: A dimensionless criterion for ‘jet’ droplets
,”
Langmuir
34
,
6307
(
2018
).
165.
D. C.
Blanchard
, “
The electrification of the atmosphere by particles from bubbles in the sea
,”
Prog. Oceanogr.
1
,
73
(
1963
).
166.
D. C.
Blanchard
, “
The size and height to which jet drops are ejected from bursting bubbles in seawater
,”
J. Geophys. Res.
94
,
10999
, https://doi.org/10.1029/JC094iC08p10999 (
1989
).
167.
D. E.
Spiel
, “
More on the births of jet drops from bubbles bursting on seawater surfaces
,”
J. Geophys. Res.: Ocean
102
,
5815
, https://doi.org/10.1029/96JC03582 (
1997
).
168.
Y.
Wang
,
J. N.
Fan
,
Y.
Yang
,
Y.
Zhang
,
Z.
Cao
, and
T.
Wang
, “
Statistical analysis of jet drop generation based on bubble size measurements in the pickling process
,”
Build. Environ
155
,
25
(
2019
).
169.
A. M.
Gañán-Calvo
, “
Revision of bubble bursting: Universal scaling laws of top jet drop size and speed
,”
Phys. Rev. Lett.
119
,
204502
(
2017
).
170.
T.
Driessen
,
R.
Jeurissen
,
H.
Wijshoff
,
F.
Toschi
, and
D.
Lohse
, “
Stability of viscous long liquid filaments
,”
Phys. Fluids
25
,
062109
(
2013
).
171.
A. A.
Castrejón-Pita
,
J. R.
Castrejón-Pita
, and
I. M.
Hutchings
, “
Breakup of liquid filaments
,”
Phys. Rev. Lett.
108
,
15
(
2012
).
172.
A. M.
Gañán-Calvo
and
J. M.
López-Herrera
, “
On the physics of transient ejection from bubble bursting
,”
J. Fluid Mech.
929
,
A5
(
2021
).
173.
B.
Ji
,
Z.
Yang
, and
J.
Feng
, “
Compound jetting from bubble bursting at an air–oil–water interface
,”
Nat. Commun.
12
,
6305
(
2021
).
174.
Z.
Yang
,
B.
Ji
,
J. T.
Ault
, and
J.
Feng
, “
Enhanced singular jet formation in oil-coated bubble bursting
,”
Nat. Phys.
(published online) (
2023
).
175.
Z.
Han
and
L.
Holappa
, “
Bubble bursting phenomenon in gas/metal/slag systems
,”
Metall. Mater. Trans. B
34
,
525
(
2003
).
176.
Y.
Li
,
Y.
Zhou
,
Z.
Sun
,
H.
Gu
,
Q.
Ma
, and
H.
Diao
, “
Analysis of hygroscopic growth properties of soluble aerosol under severe nuclear accidents conditions
,”
Prog. Nucl. Energy
127
,
103464
(
2020
).
177.
L.
Deike
,
B. G.
Reichl
, and
F.
Paulot
, “
A mechanistic sea spray generation function based on the sea state and the physics of bubble bursting
,”
AGU Adv
3
, e2022AV000750 (
2022
).
178.
A.
Berny
,
L.
Deike
,
S.
Popinet
, and
T.
Séon
, “
Size and speed of jet drops are robust to initial perturbations
,”
Phys. Rev. Fluids
7
,
13602
(
2022
).
179.
J.
Wu
, “
Production functions of film drops by bursting bubbles
,”
J. Phys. Oceanogr.
31
,
3249
(
2001
).
180.
A.
Berny
,
L.
Deike
,
T.
Séon
, and
S.
Popinet
, “
Role of all jet drops in mass transfer from bursting bubbles
,”
Phys. Rev. Fluids
5
,
33605
(
2020
).
181.
A. M.
Ganan-Calvo
, “
The ocean fine spray
,”
Phys. Fluids
35
,
023317
(
2023
).
182.
J.
Pierre
,
M.
Poujol
, and
T.
Séon
, “
Influence of surfactant concentration on drop production by bubble bursting
,”
Phys. Rev. Fluids
7
,
73602
(
2022
).
183.
B.
Neel
,
M. A.
Erinin
, and
L.
Deike
, “
Role of contamination in optimal droplet production by collective bubble bursting
,”
Geophys. Res. Lett.
49
,
e2021GL096740
, https://doi.org/10.1029/2021GL096740 (
2022
).
184.
L.
Deike
, “
Mass transfer at the ocean–atmosphere interface: The role of wave breaking, droplets, and bubbles
,”
Annu. Rev. Fluid Mech.
54
,
191
(
2022
).
185.
J.
Guo
,
S.
Zou
,
S.
Lin
,
B.
Zhao
,
X.
Deng
, and
L.
Chen
, “
Oblique droplet impact on superhydrophobic surfaces: Jets and bubbles
,”
Phys. Fluids
32
,
122112
(
2020
).
186.
E.
Villermaux
,
X.
Wang
, and
L.
Deike
, “
Bubbles spray aerosols: Certitudes and mysteries
,”
PNAS Nexus
1
,
pgac261
(
2022
).
187.
X.
Jiang
,
L.
Rotily
,
E.
Villermaux
, and
X.
Wang
, “
Submicron drops from flapping bursting bubbles
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2112924119
(
2022
).
188.
F.
Resch
and
G.
Afeti
, “
Submicron film drop production by bubbles in seawater
,”
J. Geophys. Res.: Ocean
97
,
3679
(
1992
).
189.
C.
Ma
and
H.
Bo
, “Visualization study of film drops produced by bubble bursting,”
Atom. Energy Sci. Technol.
46
,
231
(
2012
).
190.
H.
Chen
,
H.
Gu
,
H.
Lv
,
X.
Yu
,
J.
Wang
, and
H.
Luo
, “
Experimental study on the release of droplets via bubble bursting under different liquid phase conditions
,”
Prog. Nucl. Energy
132
,
103617
(
2021
).
191.
J. A.
Ghani
,
P. H.
Yap
, and
W.
Mahmood
, “
Study on liquid nano-atomization systems for minimum quantity lubrication: A review
,”
Int. J. Adv. Manuf. Technol.
121
,
5637
(
2022
).
192.
A. A.
Dasouqi
,
J.
Ghossein
, and
D. W.
Murphy
, “
The effect of liquid properties on the release of gas from bursting bubbles
,”
Exp. Fluids
63
,
39
(
2022
).
193.
Y.
Wei
,
H.
Chen
,
H.
Gu
,
L.
Chen
, and
X.
Yu
, “
Experimental investigation of the puncture position and film rolling speed of bubbles bursting under different liquid pool conditions
,”
Prog. Nucl. Energy
129
,
103510
(
2020
).
194.
R. L.
Modini
,
L. M.
Russell
,
G. B.
Deane
, and
M. D.
Stokes
, “
Effect of soluble surfactant on bubble persistence and bubble-produced aerosol particles
,”
J. Geophys. Res. Atmos.
118
,
1388
, https://doi.org/10.1002/jgrd.50186 (
2013
).
195.
H.
Qian
,
Z.
Yang
,
X.
Zhang
,
J.
Feng
, and
C.
Li
, “
Dilute oil-in-water emulsion initiates multiple holes formation during bubble bursting
,” SSRN Electron. J.
2023
,
4317627
.
196.
J. A.
Day
, “
Production of droplets and salt nuclei by the bursting of air-bubble films
,”
Q. J. R. Meteorol. Soc.
90
,
72
(
1964
).
197.
G. M.
Afeti
and
F. J.
Resch
, “
Distribution of the liquid aerosol produced from bursting bubbles in sea and distilled water
,”
Tellus B
42
,
378
(
1990
).
198.
M.
Vadivukkarasan
,
K.
Dhivyaraja
, and
M. V.
Panchagnula
, “
Breakup morphology of expelled respiratory liquid: From the perspective of hydrodynamic instabilities
,”
Phys. Fluids
32
,
094101
(
2020
).
199.
R.
Nimmagadda
,
L. G.
Asirvatham
, and
S. R.
Reddy
, “
Dynamics of rising bubbles in gradually mixing fluids due to the effect of Rayleigh–Taylor instability
,”
Int. J. Multiphase Flow
129
,
103288
(
2020
).
200.
T.
Luo
,
J.
Wang
,
C.
Xie
,
M.
Wan
, and
S.
Chen
, “
Effects of compressibility and Atwood number on the single-mode Rayleigh–Taylor instability
,”
Phys. Fluids
32
,
012110
(
2020
).
201.
S. I.
Sohn
and
S.
Baek
, “
Bubble merger and scaling law of the Rayleigh–Taylor instability with surface tension
,”
Phys. Lett. A
381
,
3812
(
2017
).
202.
R.
Mead-Hunter
,
A. J. C.
King
, and
B. J.
Mullins
, “
Plateau Rayleigh instability simulation
,”
Langmuir
28
,
6731
(
2012
).
203.
H.
González
and
F. J.
García
, “
The measurement of growth rates in capillary jets
,”
J. Fluid Mech.
619
,
179
(
2009
).
204.
Z.
Wang
,
R.
Duan
,
L.
Liu
, and
H.
Yang
, “
Jetting behavior as a bubble bursts in free space
,”
Phys. Fluids
33
,
023304
(
2021
).
205.
J. Y.
Aller
,
M. R.
Kuznetsova
,
C. J.
Jahns
, and
P. F.
Kemp
, “
The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols
,”
J. Aerosol Sci.
36
,
801
(
2005
).
206.
P. L. L.
Walls
and
J. C.
Bird
, “
Enriching particles on a bubble through drainage: Measuring and modeling the concentration of microbial particles in a bubble film at rupture
,”
Elementa
5
,
34
(
2017
).
207.
D. C.
Blanchard
, “
The ejection of drops from the sea and their enrichment with bacteria and other materials: A review
,”
Estuaries
12
,
127
(
1989
).
208.
R. E.
Cochran
,
T.
Jayarathne
,
E. A.
Stone
, and
V. H.
Grassian
, “
Selectivity across the interface: A test of surface activity in the composition of organic-enriched aerosols from bubble bursting
,”
J. Phys. Chem. Lett.
7
,
1692
(
2016
).
209.
S.
Wangwongwatana
,
P. V.
Scarpino
,
K.
Willeke
, and
P. A.
Baron
, “
System for characterizing aerosols from bubbling liquids
,”
Aerosol Sci. Technol.
13
,
297
(
1990
).
210.
D. C.
Blanchard
and
L. D.
Syzdek
, “
Water-to-air transfer and enrichment of bacteria in drops from bursting bubbles
,”
Appl. Environ. Microbiol.
43
,
1001
(
1982
).
211.
T.
Miettinen
,
J.
Ralston
, and
D.
Fornasiero
, “
The limits of fine particle flotation
,”
Miner. Eng.
23
,
420
(
2010
).
212.
D. I.
Verrelli
,
P. T. L.
Koh
, and
A. V.
Nguyen
, “
Particle–bubble interaction and attachment in flotation
,”
Chem. Eng. Sci.
66
,
5910
(
2011
).
213.
S. R.
Burger
and
J. W.
Bennett
, “
Droplet enrichment factors of pigmented and nonpigmented Serratia marcescens: Possible selective function for prodigiosin
,”
Appl. Environ. Microbiol.
50
,
487
(
1985
).
214.
B.
Ji
,
A.
Singh
, and
J.
Feng
, “
Water-to-air transfer of nano/microsized particulates: enrichment effect in bubble bursting jet drops
,”
Nano Lett.
22
,
5626
(
2022
).
215.
M. E.
Weber
,
D. C.
Blanchard
, and
L. D.
Syzdek
, “
The mechanism of scavenging of waterborne bacteria by a rising bubble
,”
Limnol. Oceanogr.
28
,
101
(
1983
).
216.
R. H.
Yoon
and
G. H.
Luttrell
, “The effect of bubble size on fine particle flotation,”
Miner. Process. Extr. Metall. Rev.
5
(
1–4
),
101
122
(
1989
).
217.
T. B.
Robinson
,
H. A.
Giebel
, and
O.
Wurl
, “
Riding the plumes: Characterizing bubble scavenging conditions for the enrichment of the sea-surface microlayer by transparent exopolymer particles
,”
Atmosphere
10
,
454
(
2019
).
218.
L.
Dubitsky
,
O.
McRae
, and
J. C.
Bird
, “
Enrichment of scavenged particles in jet drops determined by bubble size and particle position
,”
Phys. Rev. Lett.
130
,
54001
(
2023
).
219.
A. M.
Cervantes-Álvarez
,
Y. Y.
Escobar-Ortega
,
A.
Sauret
, and
F.
Pacheco-Vázquez
, “
Air entrainment and granular bubbles generated by a jet of grains entering water
,”
J. Colloid Interface Sci.
574
,
285
(
2020
).
220.
D. C.
Blanchard
and
L. D.
Syzdek
, “
Reply to comment by F. MacIntyre
,”
Limnol. Oceanogr.
23
,
573
(
1978
).
221.
J. T.
Gannon
,
V. B.
Manilal
, and
M.
Alexander
, “
Relationship between cell surface properties and transport of bacteria through soil
,”
Appl. Environ. Microbiol.
57
,
190
(
1991
).
222.
M. E.
Salter
,
E.
Hamacher-Barth
,
C.
Leck
,
J.
Werner
,
C. M.
Johnson
,
I.
Riipinen
,
E. D.
Nilsson
, and
P.
Zieger
, “
Calcium enrichment in sea spray aerosol particles
,”
Geophys. Res. Lett.
43
,
8277
, https://doi.org/10.1002/2016GL070275 (
2016
).
223.
S.
Yang
,
T.
Zhang
,
Y.
Gan
,
X.
Lu
,
H.
Chen
,
J.
Chen
,
X.
Yang
, and
X.
Wang
, “
Constraining microplastic particle emission flux from the ocean
,”
Environ. Sci. Technol. Lett.
9
,
513
(
2022
).
224.
M.
Masry
,
S.
Rossignol
,
B.
Temime Roussel
,
D.
Bourgogne
,
P. O.
Bussière
,
B.
R'mili
, and
P.
Wong-Wah-Chung
, “
Experimental evidence of plastic particles transfer at the water–air interface through bubble bursting
,”
Environ. Pollut.
280
,
116949
(
2021
).
225.
R. E.
Cochran
,
O.
Laskina
,
J. V.
Trueblood
,
A. D.
Estillore
,
H. S.
Morris
,
T.
Jayarathne
,
C. M.
Sultana
,
C.
Lee
,
P.
Lin
,
J.
Laskin
,
A.
Laskin
,
J. A.
Dowling
,
Z.
Qin
,
C. D.
Cappa
,
T. H.
Bertram
,
A. V.
Tivanski
,
E. A.
Stone
,
K. A.
Prather
, and
V. H.
Grassian
, “
Molecular diversity of sea spray aerosol particles: Impact of ocean biology on particle composition and hygroscopicity
,”
Chem
2
,
655
(
2017
).
226.
S. D.
Forestieri
,
K. A.
Moore
,
R.
Martinez Borrero
,
A.
Wang
,
M. D.
Stokes
, and
C. D.
Cappa
, “
Temperature and composition dependence of sea spray aerosol production
,”
Geophys. Res. Lett.
45
,
7218
, https://doi.org/10.1029/2018GL078193 (
2018
).
227.
E.
Kruglyakova
,
E.
Mirskaya
, and
I. E.
Agranovski
, “
Bioaerosol release from concentrated microbial suspensions in bubbling processes
,”
Atmosphere
13
,
2029
(
2022
).
228.
M. E.
Salter
,
E. D.
Nilsson
,
A.
Butcher
, and
M.
Bilde
, “
On the seawater temperature dependence of the sea spray aerosol generated by a continuous plunging jet
,”
J. Geophys. Res.
119
,
9052
, https://doi.org/10.1002/2013JD021376 (
2014
).
You do not currently have access to this content.