We investigate experimentally the attraction between two closely spaced, oscillating microbubbles. Above a certain value of the applied acoustic field, the bubbles jump to a new equilibrium location, where they are separated by a thin fluid layer whose the thickness is much smaller than the bubble radii. We demonstrate that this new equilibrium is caused by the sign reversal of the radiation interaction force acting between the two bubbles, attributed to the multiple rescattering effects of the waves emitted by the bubbles. Theoretical investigation reveals that a new stable equilibrium appears at short distances, resulting in a quasi-contacting bubble pair.

1.
W.
Lauterborn
and
T.
Kurz
, “
Physics of bubble oscillations
,”
Rep. Prog. Phys.
73
(
10
),
106501
(
2010
).
2.
M. P.
Brenner
,
D.
Lohse
, and
T. F.
Dupont
, “
Bubble shape oscillations and the onset of sonoluminescence
,”
Phys. Rev. Lett.
75
(
5
),
954
(
1995
).
3.
M.
Guédra
,
C.
Inserra
,
C.
Mauger
, and
B.
Gilles
, “
Experimental evidence of nonlinear mode coupling between spherical and nonspherical oscillations of microbubbles
,”
Phys. Rev. E
94
,
053115
(
2016
).
4.
S. J.
Shaw
, “
Translation and oscillation of a bubble under axisymmetric deformation
,”
Phys. Fluids
18
,
072104
(
2006
).
5.
A. A.
Doinikov
, “
Translational motion of a bubble undergoing shape oscillations
,”
J. Fluid Mech.
501
,
1
24
(
2004
).
6.
V. F. K.
Bjerknes
,
Fields of Force
(
Columbia University Press
,
1906
).
7.
A. I.
Eller
, “
Force on a bubble in a standing acoustic wave
,”
J. Acoust. Soc. Am.
43
,
170
171
(
1968
).
8.
O.
Vincent
and
P.
Marmottant
, “
On the statics and dynamics of fully confined bubbles
,”
J. Fluid Mech.
827
,
194
224
(
2017
).
9.
M. S.
Longuet-Higgins
, “
Viscous streaming from an oscillating spherical bubble
,”
Proc. R. Soc. A
454
,
725
(
1998
).
10.
S.
Cleve
,
M.
Guedra
,
C.
Mauger
,
C.
Inserra
, and
P.
Blanc-Benon
, “
Microstreaming induced by acoustically trapped, non-spherically oscillating microbubbles
,”
J. Fluid Mech.
875
,
597
621
(
2019
).
11.
R.
Mettin
, “
Bubble structures in acoustic cavitation
,”
Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications
(
Research Signpost
,
Kerala, India
,
2005
), pp.
1
36
.
12.
U.
Parlitz
,
R.
Mettin
,
S.
Luther
,
I. S.
Akhatov
,
M. A.
Voss
, and
W.
Lauterborn
, “
Spatio–temporal dynamics of acoustic cavitation bubble clouds
,”
Philos. Trans. R. Soc. London, Ser. A
357
,
313
334
(
1999
).
13.
L. A.
Crum
, “
Bjerknes forces on bubbles in a stationary sound field
,”
J. Acoust. Soc. Am.
57
,
1363
(
1975
).
14.
P. L.
Marston
,
E. H.
Trinh
,
J.
Depew
,
T. J.
Asaki
 et al, “
Response of bubbles to ultrasonic radiation pressure: Dynamics in low gravity and shape oscillations
,” in
Bubble Dynamics and Interface Phenomena
, edited by
J. R.
Blake
 et al (
Kluwer Academic
,
Dordrecht
,
1994
), pp.
343
353
.
15.
E. A.
Zabolotskaya
, “
Interaction of gas bubbles in a sound wave field
,”
Sov. Phys. Acoust.
30
(
5
),
365
368
(
1984
).
16.
A. A.
Doinikov
and
S. T.
Zavtrak
, “
On the mutual interaction of two gas bubbles in a sound field
,”
Phys. Fluids
7
,
1923
1930
(
1995
).
17.
A. A.
Doinikov
and
S. T.
Zavtrak
, “
On the ‘bubble grapes’ induced by a sound field
,”
J. Acoust. Soc. Am.
99
,
3849
3950
(
1996
).
18.
N. A.
Pelekasis
,
A.
Gaki
,
A.
Doinikov
, and
J. A.
Tsamopoulos
, “
Secondary Bjerknes forces between two bubbles and the phenomenon of acoustic streamers
,”
J. Fluid Mech.
500
,
313
347
(
2004
).
19.
M.
Ida
, “
Alternative interpretation of the sign reversal of secondary Bjerknes force acting between two pulsating gas bubbles
,”
Phys. Rev. E
67
(
5
),
056617
(
2003
).
20.
M.
Lanoy
,
C.
Derec
,
A.
Tourin
, and
V.
Leroy
, “
Manipulating bubbles with secondary Bjerknes forces
,”
Appl. Phys. Lett.
107
,
214101
(
2015
).
21.
K.
Yoshida
,
T.
Fujikawa
, and
Y.
Watanabe
, “
Experimental investigation on reversal of secondary Bjerknes force between two bubbles in ultrasonic standing wave
,”
J. Acoust. Soc. Am.
130
(
1
),
135
144
(
2011
).
22.
T.
Barbat
,
B.
Ashgriz
, and
C.-S.
Liu
, “
Dynamics of two interacting bubbles in an acoustic field
,”
J. Fluid Mech.
389
,
137
168
(
1999
).
23.
D. L.
Miller
, “
Stable arrays of resonant bubbles in a 1-MHz standing-wave acoustic field
,”
J. Acoust. Soc. Am.
62
,
12
(
1977
).
24.
D.
Rabaud
,
P.
Thibault
,
M.
Mathieu
, and
P.
Marmottant
, “
Acoustically bound microfluidic bubble crystals
,”
Phys. Rev. Lett.
106
(
13
),
134501
(
2011
).
25.
G.
Regnault
,
C.
Mauger
,
P.
Blanc-Benon
, and
C.
Inserra
, “
Secondary radiation force between two closely spaced acoustic bubbles
,”
Phys. Rev. E
102
(
3
),
031101
(
2020
).
26.
A. A.
Doinikov
, “
Bjerknes forces and translational bubble dynamics
,” in
Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications
(
Research Signpost
,
Trivandrum, Kerala, India
,
2005
), pp.
95
143
.
27.
S.
Annamalai
and
S.
Balachandar
, “
Mean force on a finite-sized rigid particle, droplet, or bubble in a viscous compressible medium
,”
Phys. Fluids
27
,
103304
(
2015
).
You do not currently have access to this content.