A numerical study of the longitudinal pulsed detonation (LPD) is conducted in the present paper. The occurrence mechanism of the LPD, called shock wave amplification by coherent energy release, is verified preliminarily in this study. To be specific, upstream propagating shock waves, which originate from the outlet, induce a specific gradient of reactant distribution, and then detonation waves are ignited and evolve along the gradient in close succession. It is worth noting that the occurrence of LPD does not mean that the LPD will necessarily be sustained. The low injection pressure ratio PR (i.e., the ratio of inlet pressure to outlet pressure) = 1.3 is found to be conducive to the sustenance of the LPD instability in the baseline model. A lower PR (PR ≤ 1.2) or a slightly higher PR (1.4 ≤ PR ≤ 1.8) shall lead to an unstable detonation or quenching of detonations, while a much higher PR (PR > 1.8) contributes to the formation of stable canonical rotating detonation waves. In addition, the combustion regimes of five combustors of different heights at different PR are explored. As the combustion chamber height increases, the PR of the sustainable LPD is nearly linearly increasing, and its operating frequency decreases gradually. The calculation formula between the sustainable LPD propagating frequency and the natural acoustic resonance frequency of the combustor is employed and discussed, but in consideration of its imperfection, further investigation is required.

1.
P.
Wolański
, “
Detonative propulsion
,”
Proc. Combust. Inst.
34
,
125
(
2013
).
2.
F. K.
Lu
and
E. M.
Braun
, “
Rotating detonation wave propulsion: Experimental challenges, modeling, and engine concepts
,”
J. Propul. Power
30
,
1125
(
2014
).
3.
V.
Anand
and
E.
Gutmark
, “
Rotating detonation combustors and their similarities to rocket instabilities
,”
Prog. Energy Combust. Sci.
73
,
182
(
2019
).
4.
J.
Ma
,
M.
Luan
,
Z.
Xia
,
J.
Wang
,
S.
Zhang
,
S.
Yao
, and
B.
Wang
, “
Recent progress, development trends, and consideration of continuous detonation engines
,”
AIAA J.
58
,
4976
(
2020
).
5.
F. A.
Bykovskii
and
E. F.
Vedernikov
, “
Continuous detonation of a subsonic flow of a propellant
,”
Combust. Explos. Shock Waves
39
,
323
334
(
2003
).
6.
V.
Anand
,
A.
St. George
,
R.
Driscoll
, and
E.
Gutmark
, “
Longitudinal pulsed detonation instability in a rotating detonation combustor
,”
Exp. Therm. Fluid Sci.
77
,
212
(
2016
).
7.
R.
Bluemner
,
E. J.
Gutmark
,
C. O.
Paschereit
, and
M. D.
Bohon
, “
Stabilization mechanisms of longitudinal pulsations in rotating detonation combustors
,”
Proc. Combust. Inst.
38
,
3797
(
2021
).
8.
R.
Bluemner
,
M.
Bohon
,
H.-Q.
Nguyen
,
C. O.
Paschereit
, and
E. J.
Gutmark
, “
Influence of reactant injection parameters on RDC mode of operation
,” AIAA Paper No. 2019-2021,
2019
.
9.
H.
Wen
and
B.
Wang
, “
Experimental study of perforated-wall rotating detonation combustors
,”
Combust. Flame
213
,
52
(
2020
).
10.
Y.
Wang
,
W.
Qiao
, and
J.
Le
, “
Combustion characteristics in rotating detonation engines
,”
Int. J. Aerosp. Eng.
2021
,
8839967
.
11.
R.
Bluemner
,
M. D.
Bohon
,
C. O.
Paschereit
, and
E. J.
Gutmark
, “
Effect of inlet and outlet boundary conditions on rotating detonation combustion
,”
Combust. Flame
216
,
300
(
2020
).
12.
D.
Shen
,
J. Z.
Ma
,
Z.
Sheng
,
G.
Rong
,
K.
Wu
,
Y.
Zhang
, and
J.
Wang
, “
Spinning pulsed detonation in rotating detonation engine
,”
Aerosp. Sci. Technol.
126
,
107661
(
2022
).
13.
J. H.
Lee
,
R.
Knystautas
, and
N.
Yoshikawa
, “
Photochemical initiation of gaseous detonations
,”
Acta Astronaut.
5
,
971
(
1978
).
14.
S. M.
Frolov
,
V. S.
Aksenov
,
V. S.
Ivanov
, and
I. O.
Shamshin
, “
Large-scale hydrogen–air continuous detonation combustor
,”
Int. J. Hydrogen Energy
40
,
1616
(
2015
).
15.
R.
Driscoll
,
V.
Anand
,
A. S.
George
, and
E.
Gutmark
, “
Investigation on RDE operation by geometric variation of the combustor annulus and nozzle exit area
,” in
9th US National Combustion Meeting
(Combustion Institute in Cincinnati, Ohio,
2015
), pp.
1
10
.
16.
C.
Wang
,
W.
Liu
,
S.
Liu
,
L.
Jiang
, and
Z.
Lin
, “
Experimental investigation on detonation combustion patterns of hydrogen/vitiated air within annular combustor
,”
Exp. Therm. Fluid Sci.
66
,
269
(
2015
).
17.
E. S.
Oran
,
J. W.
Weber
, Jr.
,
E. I.
Stefaniw
,
M. H.
Lefebvre
, and
J. D.
Anderson
, Jr.
, “
A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model
,”
Combust. Flame
113
,
147
(
1998
).
18.
G.
Rong
,
M.
Cheng
,
Z.
Sheng
,
X.
Liu
,
Y.
Zhang
, and
J.
Wang
, “
Investigation of counter-rotating shock wave and wave direction control of hollow rotating detonation engine with Laval nozzle
,”
Phys. Fluids
34
(
5
),
056104
(
2022
).
19.
K.
Wu
,
S.
Zhang
,
D.
She
, and
J.
Wang
, “
Analysis of flow-field characteristics and pressure gain in air-breathing rotating detonation combustor
,”
Phys. Fluids
33
(
12
),
126112
(
2021
).
20.
Y.
Liu
,
W.
Zhou
,
Y.
Yang
,
Z.
Liu
, and
J.
Wang
, “
Numerical study on the instabilities in H2-air rotating detonation engines
,”
Phys. Fluids
30
(
4
),
046106
(
2018
).
21.
D.
Shen
,
M.
Cheng
,
K.
Wu
,
Z.
Sheng
, and
J.
Wang
, “
Effects of supersonic nozzle guide vanes on the performance and flow structures of a rotating detonation combustor
,”
Acta Astronaut.
193
,
90
(
2022
).
22.
P.
Zhang
,
P. A.
Meagher
, and
X.
Zhao
, “
Multiplicity for idealized rotational detonation waves
,”
Phys. Fluids
33
,
106102
(
2021
).
23.
S.
Taileb
,
J.
Melguizo-Gavilanes
, and
A.
Chinnayya
, “
The influence of the equation of state on the cellular structure of gaseous detonations
,”
Phys. Fluids
33
,
036105
(
2021
).
24.
W.
Chen
,
J.
Liang
,
X.
Cai
, and
Y.
Mahmoudi
, “
Three-dimensional simulations of detonation propagation in circular tubes: Effects of jet initiation and wall reflection
,”
Phys. Fluids
32
,
046104
(
2020
).
25.
H.
Teng
,
H. D.
Ng
,
P.
Yang
, and
K.
Wang
, “
Near-field relaxation subsequent to the onset of oblique detonations with a two-step kinetic model
,”
Phys. Fluids
33
,
096106
(
2021
).
26.
G.
Xiang
,
X.
Gao
,
W.
Tang
,
X.
Jie
, and
X.
Huang
, “
Numerical study on transition structures of oblique detonations with expansion wave from finite-length cowl
,”
Phys. Fluids
32
,
056108
(
2020
).
27.
J.
Koch
and
J. N.
Kutz
, “
Modeling thermodynamic trends of rotating detonation engines
,”
Phys. Fluids
32
(
12
),
126102
(
2020
).
28.
X.
Liu
,
M.
Luan
,
Y.
Chen
, and
J.
Wang
, “
Propagation behavior of rotating detonation waves with premixed kerosene/air mixtures
,”
Fuel
294
,
120253
(
2021
).
29.
X.
Liu
,
M.
Luan
,
Y.
Chen
, and
J.
Wang
, “
Flow-field analysis and pressure gain estimation of a rotating detonation engine with banded distribution of reactants
,”
Int. J. Hydrogen Energy
45
,
19976
(
2020
).
30.
X.
He
,
X.
Liu
, and
J.
Wang
, “
On the mechanisms of the multiplicity and bifurcation of detonation waves in 3D rotating detonation engines
,”
Aerosp. Sci. Technol.
130
,
107874
(
2022
).
31.
B.
Franzelli
,
E.
Riber
,
M.
Sanjosé
, and
T.
Poinsot
, “
A two-step chemical scheme for kerosene–air premixed flames
,”
Combust. Flame
157
,
1364
(
2010
).
32.
Z.
Ren
,
B.
Wang
,
G.
Xiang
, and
L.
Zheng
, “
Numerical analysis of wedge-induced oblique detonations in two-phase kerosene–air mixtures
,”
Proc. Combust. Inst.
37
,
3627
(
2019
).
33.
M.
Zhao
,
M. J.
Cleary
, and
H.
Zhang
, “
Combustion mode and wave multiplicity in rotating detonative combustion with separate reactant injection
,”
Combust. Flame
225
,
291
(
2021
).
34.
J.
Fujii
,
Y.
Kumazawa
,
A.
Matsuo
,
S.
Nakagami
,
K.
Matsuoka
, and
J.
Kasahara
, “
Numerical investigation on detonation velocity in rotating detonation engine chamber
,”
Proc. Combust. Inst.
36
,
2665
(
2017
).
35.
Z.
Huang
,
M.
Zhao
,
Y.
Xu
,
G.
Li
, and
H.
Zhang
, “
Eulerian-Lagrangian modelling of detonative combustion in two-phase gas-droplet mixtures with OpenFOAM: Validations and verifications
,”
Fuel
286
,
119402
(
2021
).
36.
M.
Zhao
and
H.
Zhang
, “
Origin and chaotic propagation of multiple rotating detonation waves in hydrogen/air mixtures
,”
Fuel
275
,
117986
(
2020
).
37.
H.
Wen
,
W.
Wei
,
W.
Fan
,
Q.
Xie
, and
B.
Wang
, “
On the propagation stability of droplet-laden two-phase rotating detonation waves
,”
Combust. Flame
244
,
112271
(
2022
).
38.
Q.
Meng
,
N.
Zhao
, and
H.
Zhang
, “
On the distributions of fuel droplets and in situ vapor in rotating detonation combustion with prevaporized n-heptane sprays
,”
Phys. Fluids
33
(
4
),
043307
(
2021
).
39.
X.
Liu
,
M.
Cheng
,
Y.
Zhang
, and
J.
Wang
, “
Design and optimization of aerospike nozzle for rotating detonation engine
,”
Aerosp. Sci. Technol.
120
,
107300
(
2022
).
40.
D.
Schwer
and
K.
Kailasanath
, “
Numerical investigation of the physics of rotating-detonation-engines
,”
Proc. Combust. Inst.
33
,
2195
(
2011
).
41.
S.
Gordon
,
Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations
(
Scientific and Technical Information Office, National Aeronautics and Space Administration
,
1976
).
42.
L.
Deng
,
H.
Ma
,
X.
Liu
, and
C.
Zhou
, “
Secondary shock wave in rotating detonation combustor
,”
Aerosp. Sci. Technol.
95
,
105517
(
2019
).
43.
J. H.
Lee
,
The Detonation Phenomenon
(
Cambridge University Press
,
2008
).
44.
H.
Wen
,
Q.
Xie
, and
B.
Wang
, “
Propagation behaviors of rotating detonation in an obround combustor
,”
Combust. Flame
210
,
389
(
2019
).
You do not currently have access to this content.