The “communication blackout” occurs during the reentry of hypersonic vehicles, that is, the electromagnetic wave cannot pass through the plasma sheath due to high electron density formed around the vehicle, which has drawn much attention but has not yet been solved. In this paper, a novel magnetic control approach is proposed, in which a periodic magnetic field is applied near the head of the aircraft. Based on the magnetohydrodynamic simulation, a low electron density channel across the plasma sheath of vehicle under the magnetic control is revealed for the first time, which probably make Ka-band electromagnetic wave pass through. We also find that the reason for the low electron density channel is the variation of the vortex structure in the plasma flow near the wall, by the electromagnetic force exerted on the flow. Furthermore, the optimal magnetic field frequency for generating the low electron density channel is obtained. These findings will be of significant benefit to the solutions for the communication blackout problems.

1.
J.
Rybak
and
R. J.
Churchill
, “
Progress in reentry communications
,”
IEEE Trans. Aerosp. Electron. Syst.
AES-7
(
5
),
879
894
(
1971
).
2.
E. D.
Gillman
,
J. E.
Foster
, and
I. M.
Blankson
, “
Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation
,” Technical Memorandum No. NASA/TM-2010-216220,
2010
.
3.
R.
Rawhouser
, “
Overview of the AF avionics laboratory reentry electromagnetics program
,” Reort No. NASA SP-252,
1970
.
4.
I. F.
Belov
 et al, “
Investigation of remote antenna assembly for radio communication with reentry vehicle
,”
J. Spacecr. Rockets
38
(
2
),
249
256
(
2001
).
5.
E. O.
,
Daso
,
V. E.
Pritchett
,
T. S.
Wang
,
D. K.
Ota
,
I. M.
Blankson
, and
A. H.
Auslender
, “
Dynamics of shock dispersion and interactions in supersonic freestreams with counterflowing jets
,”
AIAA J.
47
(
6
),
1313
1326
(
2009
).
6.
W. L.
Weaver
, “
Multiple-orifice liquid injection into hypersonic air streams and application to RAM C-III flight
,” Report No. NASA TM X-2486,
1972
.
7.
P. W.
Huber
,
J. S.
Evans
, and
C. J.
Schexnayder
, Jr., “
Comparison of theoretical and flight-measured ionization in a blunt body re-entry flowfield
,”
AIAA J.
9
(
6
),
1154
1162
(
1971
).
8.
V. A.
Gorelov
,
M. K.
Gladyshev
,
A. Y.
Kireev
,
A. S.
Korolev
,
I. V.
Yegorov
, and
V. N.
Byzov
, “
Computational and experimental investigations of ionization near hypersonic vehicles
,”
J. Spacecr. Rockets
33
(
6
),
800
806
(
1996
).
9.
G.
Norris
, “
Plasma puzzle: Radio frequency-blocking sheath presents a hurdle to hypersonic flight
,”
Aviat. Week Space Technol.
2009
,
58
.
10.
N.-Y.
Zhu
,
L.-S.
Huang
, and
B.
Wu
, “
Transmission characteristics of EM wave in a finite thickness plasma
,”
Acta Mech. Sin.
29
(
2
),
189
195
(
2013
).
11.
H. J.
Ma
,
G. L.
Wang
,
J.
Luo
,
L. P.
Liu
, and
F.
Tang
, “
Experimental study of electromagnetic wave transmission characteristics in S-Ka band in plasma
,”
Acta Phys. Sin.
67
(
2
),
164
171
(
2018
).
12.
B.
Yao
,
X.
Li
,
L.
Shi
,
Y.
Liu
, and
B.
Bai
, “
A layered fluctuation model of electron density in plasma sheath and instability effect on electromagnetic wave at Ka band
,”
Aerosp. Sci. Technol.
78
,
480
487
(
2018
).
13.
A. M.
Messiaen
and
P. E.
Vandenplas
, “
Theory and experiments of the enhanced radiation from a plasma-coated antenna
,”
Electron. Lett.
3
(
1
),
26
27
(
1967
).
14.
C.
Davis
,
S.
Bilen
, and
P.
Peterson
, “
Hypersonic or re-entry plasma communication
,” AIAA Paper No. 2011-2353,
2011
.
15.
C.
Wen
 et al, “
A new method to mitigate communication blackout based on sandwich structure
,” in
Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, CSQRWC
(
IEEE
,
2018
).
16.
X.
Kai
 et al, “
Re-entry communication through a plasma sheath using standing wave detection and adaptive data rate control
,”
J. Appl. Phys.
119
,
023301
(
2016
).
17.
Y.
Yang
,
Z.
Yu
,
P.
Ma
,
Z.
Zhang
, and
J.
Huang
, “
Design and experimental research of an integrated GPS magneto window antenna
,”
High Power Laser Part. Beams
27
,
053201
(
2015
).
18.
G.
He
 et al, “
Measuring the time-varying channel characteristics of the plasma sheath from the reflected signal
,”
IEEE Trans. Plasma Sci.
42
(
12
),
3975
3981
(
2014
).
19.
X.
Gao
and
B.
Jiang
, “
A matching approach to communicate through the plasma sheath surrounding a hypersonic vehicle
,”
J. Appl. Phys.
117
(
23
),
233301
(
2015
).
20.
X.
Gao
 et al, “
A physical model of radiated enhancement of plasma surrounded antenna
,”
Phys. Plasmas
21
(
9
),
093301
(
2014
).
21.
R. A.
Hartunian
,
G. E.
Stewart
,
S. D.
Fergason
,
T. J.
Curtiss
, and
R. W.
Seibold
, “
Causes and mitigation of radio frequency (RF) blackout during reentry of reusable launch vehicles
,” Report No. ATR-2006(5309)-1, Aerospace Corporation,
2007
.
22.
C.
Jones
, “
Recommendations from the workshop on communications through plasma during hypersonic flight
,”
AIAA Paper No. 2009-1718
,
2009
.
23.
H.
Hodara
, “
The use of magnetic fields in the elimination of the re-entry radio blackout
,”
Proc. IRE
49
(
12
),
1825
1830
(
1961
).
24.
F. P.
Russo
and
J. K.
Hughes
, “
Measurements of the effects of static magnetic fields on VHF transmission in ionized flow fields
,” Report No. NASA TM X-907,
1964
.
25.
H.
Usui
,
H.
Matsumoto
,
F.
Yamashita
,
M.
Yamane
, and
S.
Takenaka
, “
Computer experiments on radio blackout of a reentry vehicle
,” in
Proceedings of 6th Spacecraft Charging Conference
,
1998
.
26.
R.
Starkey
, “
Electromagnetic wave/magnetoactive plasma sheath interaction for hypersonic vehicle telemetry blackout analysis
,” AIAA Paper No. 2003-4167,
2003
.
27.
M.
Kundrapu
 et al, “
Modeling radio communication blackout and blackout mitigation in hypersonic vehicles
,”
J. Spacecr. Rockets
52
(
3
),
853
862
(
2015
).
28.
M.
Kim
,
M.
Keidar
, and
I. D.
Boyd
, “
Analysis of an electromagnetic mitigation scheme for reentry telemetry through plasma
,”
J. Spacecr. Rockets
45
(
6
),
1223
1229
(
2008
).
29.
M.
Kim
,
I. D.
Boyd
, and
M.
Keidar
, “
Numerical modeling of plasma manipulation using an E×B layer in the hypersonic boundary layer
,” AIAA Paper No. 2009-3732,
2009
.
30.
M.
Kim
,
I. D.
Boyd
, and
M.
Keidar
, “
Modeling of electromagnetic manipulation of plasmas for communication during reentry flight
,”
J. Spacecr. Rockets
47
(
1
),
29
35
(
2010
).
31.
K. M.
Lemmer
,
A. D.
Gallimore
,
T. B.
Smith
,
C. N.
Davis
, and
P.
Peterson
, “
Experimental results for communications blackout amelioration using crossed electric and magnetic fields
,”
J. Spacecr. Rockets
46
(
6
),
1100
1109
(
2009
).
32.
M.
Kim
, “
Active plasma layer manipulation scheme during hypersonic flight
,”
Aerosp. Sci. Technol.
35
,
135
142
(
2014
).
33.
K.
Button
, “
Blackout busters
,”
Aerosp. Am.
55
(
4
),
12
15
(
2017
).
34.
L.
Steffens
,
S.
Krishnamoorthy
,
A.
Gulhan
, and
S.
Close
, “
Experimental verification of pulsed electrostatic manipulation for reentry blackout alleviation
,” in
IEEE Aerospace Conference
,
2017
.
35.
R. L.
Stenzel
and
J. M.
Urrutia
, “
A new method for removing the blackout problem on reentry vehicles
,”
J. Appl. Phys.
113
(
10
),
103303
103335
(
2013
).
36.
R. W.
MacCormack
, “
An upwind conservation form method for the ideal magnetohydrodynamics equations
,” AIAA Paper No. 1999-3609,
1999
.
37.
J.
Augustinus
,
K. A.
Hoffmann
, and
S.
Harada
, “
Effect of magnetic field on the structure of high-speed flows
,”
J. Spacecr. Rockets
35
(
5
),
639
646
(
1998
).
38.
W. B.
Bush
, “
Magnetohydrodynamic-hypersonic flow past a blunt body
,”
J. Aerosp. Sci.
25
(
11
),
685
690
(
1958
).
39.
R. W.
Ziemer
, “
Experimental investigation in magneto-aerodynamics
,”
ARS J.
29
(
9
),
642
647
(
1959
).
40.
D. V.
Gaitonde
and
J.
Poggie
, “
Simulation of magnetogasdynamic flow control techniques
,” AIAA Paper No. 2000-2326,
2000
.
41.
J.
Poggie
and
D. V.
Gaitonde
, “
Computational studies of magnetic control in hypersonic flow
,” AIAA Paper No. 2001-196,
2000
.
42.
R. C.
Meyer
, “
On reducing aerodynamic heat-transfer rates by magnetohydrodynamics techniques
,”
J. Aerosp. Sci.
25
(
9
),
561
566
(
1958
).
43.
N. J.
Bisek
,
I. D.
Boyd
, and
J.
Poggie
, “
Numerical study of plasma-assisted aerodynamic control for hypersonic vehicles
,”
J. Spacecr. Rockets
46
(
3
),
568
576
(
2009
).
44.
N. J.
Bisek
and
J.
Poggie
, “
Exploration of MHD flow control for a hypersonic blunt elliptic cone with an impregnated ablator
,” AIAA Paper No. 2011-897,
2011
.
45.
J. S.
Shang
and
S. T.
Surzhikov
, “
Nonequilibrium radiative hypersonic flow simulation
,”
Prog. Aeronaut. Sci.
53
,
46
65
(
2012
).
46.
J.
Cheng
,
K.
Jin
,
Y.
Kou
,
R.
Hu
, and
X.
Zheng
, “
An electromagnetic method for removing the communication blackout with a space vehicle upon re-entry into the atmosphere
,”
J. Appl. Phys.
121
(
9
),
093301
(
2017
).
47.
M.
Jung
,
H.
Kihara
, and
K.
Abe
, and Y. Takahashi, “
Reentry blackout prediction for atmospheric reentry demonstrator mission considering uncertainty in chemical reaction rate model
,”
Phys. Plasmas
25
(
1
),
013507
(
2018
).
48.
R.
Hu
,
Z.
Wu
,
Z.
Wu
,
X.
Wang
, and
Z.
Tian
, “
Aerodynamic map for soft and hard hypersonic level flight in near space
,”
Acta Mech. Sin.
25
,
571
575
(
2009
).
49.
R.
MacCormack
, “
Aerodynamic flow calculations with strong magnetic induction and diffusion
,”
AIAA Paper No. 2005-559
,
2005
.
50.
G. S. R.
Sarma
, “
Physico–chemical modelling in hypersonic flow simulation
,”
Prog. Aerosp. Sci.
36
(
3–4
),
281
349
(
2000
).
51.
D. A.
Gurnett
and
A.
Bhattacharjee
,
Introduction to Plasma Physics: With Space and Laboratory Applications
(
Cambridge University Press
,
2005
).
52.
P. A.
Gnoffo
, “
Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium
,” Report No. NAS 1.60:2867, National Aeronautics and Space Administration,
1989
.
53.
E.
Josyula
and
W. F.
Bailey
, “
Governing equations for weakly ionized plasma flow fields of aerospace vehicles
,”
J. Spacecr. Rocket
40
(
6
),
845
857
(
2003
).
54.
A.
Shashurin
,
T.
Zhuang
,
G.
Teel
,
M.
Keidar
,
M.
Kundrapu
,
J.
Loverich
,
I. I.
Beilis
, and
Y.
Raitses
, “
Laboratory modeling of the plasma layer at hypersonic flight
,”
J. Spacecr. Rocket
51
(
3
),
838
846
(
2014
).
55.
C.
Geuzaine
and
J. F.
Remacle
, “
Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities
,”
Int. J. Numer. Methods Eng.
79
(
11
),
1309
1331
(
2009
).
56.
N. D.
Akey
, “
The entry plasma sheath and its effects on space vehicle electromagnetic systems
,” Report No. NASA SP-252 1,
1971
.
57.
G. V.
Candler
, “
Rate effects in hypersonic flows
,”
Annu. Rev. Fluid Mech.
51
,
379
402
(
2019
).
58.
S. A.
Ledvina
,
Y. J.
Ma
, and
E.
Kallio
, “
Modeling and simulating flowing plasmas and related phenomena
,”
Space Sci. Rev.
139
,
143
189
(
2008
).
59.
Z.-G.
Cai
,
J.-H.
Pan
, and
M.-J.
Ni
, “
The evolution and instability of wake structure around an impulsively stopped sphere with a streamwise magnetic field for 600 ≤ Re ≤ 1400
,”
Acta Mech. Sin.
38
(10),
322070
(
2022
).
You do not currently have access to this content.