Complex shock interactions and severe aerothermal loads are often encountered on the lips of three-dimensional inward-turning inlets, which presents significant challenges to the performance and safety of hypersonic flight vehicles. However, there have been few investigations on reducing the heat flux of the lips, especially when considering real gas effects. It is, therefore, necessary to investigate flow control methods that are suitable for the lips under real gas effects. Three flow control methods are implemented in this work—a passive method with the shock control bump and stagnation bulge, an active method with counterflow jet, and a combined method. The lip is simplified as a V-shaped blunt leading edge to eliminate the influence of other structures. Numerical simulations are performed at freestream Mach numbers ranging from 6.0 to 12.0. The principles and abilities of different flow control methods for reducing heat flux are compared and analyzed. Although the passive and active methods can reduce the heat flux by more than 40% at low Mach numbers, they have an apparent deficiency under strong real gas effects at high Mach numbers. Moreover, the active method causes new heat flux peaks near the nozzle and at the reattachment position of the flow separation zone. Therefore, a combined method is proposed for further reducing the heat flux. By coupling the passive and active methods, the combined method can reduce the heat flux by nearly 60%. In general, the flow control methods investigated in this work can achieve satisfactory heat flux reduction abilities.

1.
B.
John
,
V. N.
Kulkarni
, and
G.
Natarajan
, “
Shock wave boundary layer interactions in hypersonic flows
,”
Int. J. Heat Mass Transfer
70
,
81
90
(
2014
).
2.
A. S.
Durna
,
M.
El Hajj Ali Barada
, and
B.
Celik
, “
Shock interaction mechanisms on a double wedge at Mach 7
,”
Phys. Fluids
28
,
096101
(
2016
).
3.
D. S.
Dolling
, “
Fifty years of shock-wave/boundary-layer interaction research: What next?
AIAA J.
39
,
1517
1531
(
2001
).
4.
G. S.
Settles
and
L. J.
Dodson
, “
Supersonic and hypersonic shock/boundary-layer interaction database
,”
AIAA J.
32
,
1377
1383
(
1994
).
5.
A. R.
Wieting
and
M. S.
Holden
, “
Experimental shock-wave interference heating on a cylinder at Mach 6 and 8
,”
AIAA J.
27
,
1557
1565
(
1989
).
6.
G.
Ben-Dor
,
E. I.
Vasilev
,
T.
Elperin
, and
A. V.
Zenovich
, “
Self-induced oscillations in the shock wave flow pattern formed in a stationary supersonic flow over a double wedge
,”
Phys. Fluids
15
,
L85
(
2003
).
7.
O.
Tumuklu
,
D. A.
Levin
, and
V.
Theofilis
, “
Investigation of unsteady, hypersonic, laminar separated flows over a double cone geometry using a kinetic approach
,”
Phys. Fluids
30
,
046103
(
2018
).
8.
A. G.
Panaras
and
D.
Drikakis
, “
High-speed unsteady flows around spiked-blunt bodies
,”
J. Fluid Mech.
632
,
69
96
(
2009
).
9.
L.
Vanstone
,
M. N.
Musta
,
S.
Seckin
, and
N.
Clemens
, “
Experimental study of the mean structure and quasi-conical scaling of a swept-compression-ramp interaction at Mach 2
,”
J. Fluid Mech.
841
,
1
27
(
2018
).
10.
B.
Edney
, “
Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock
,”
FFA Report No. 115
(
Aeronautical Research Institute of Sweden
,
1986
).
11.
F.
Grasso
,
C.
Purpura
,
B.
Chanetz
, and
J.
Délery
, “
Type III and type IV shock/shock interferences: Theoretical and experimental aspects
,”
Aerosp. Sci. Technol.
7
,
93
106
(
2003
).
12.
D.
Sziroczak
and
H.
Smith
, “
A review of design issues specific to hypersonic flight vehicles
,”
Prog. Aerosp. Sci.
84
,
1
28
(
2016
).
13.
Y.
You
, “
An overview of the advantages and concerns of hypersonic inward turning inlets
,” AIAA Paper No. 2011-2269,
2011
.
14.
M. K.
Smart
, “
Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition
,”
J. Propul. Power
15
,
408
416
(
1999
).
15.
F. S.
Xiao
,
Z. F.
Li
,
Z. Y.
Zhang
,
Y. J.
Zhu
, and
J. M.
Yang
, “
Hypersonic shock wave interactions on a V-shaped blunt leading edge
,”
AIAA J.
56
,
356
367
(
2018
).
16.
D. X.
Wang
,
Z. F.
Li
,
Z. Y.
Zhang
,
N. S.
Liu
,
J. M.
Yang
, and
X. Y.
Lu
, “
Unsteady shock interactions on V-shaped blunt leading edges
,”
Phys. Fluids
30
,
116104
(
2018
).
17.
Z. Y.
Zhang
,
Z. F.
Li
,
R.
Huang
, and
J. M.
Yang
, “
Experimental investigation of shock oscillations on V-shaped blunt leading edges
,”
Phys. Fluids
31
,
026110
(
2019
).
18.
Z. Y.
Zhang
,
Z. F.
Li
, and
J. M.
Yang
, “
Transitions of shock interactions on V-shaped blunt leading edges
,”
J. Fluid Mech.
912
,
A12
(
2021
).
19.
S.
Karl
and
J.
Steelant
, “
Crossflow phenomena in streamline-traced hypersonic intakes
,”
J. Propul. Power
34
,
449
459
(
2018
).
20.
N. J.
Bisek
, “
Influence of the external aeroshell on the HIFiRE-6 using high-fidelity simulations
,” AIAA Paper No. 2017-1480,
2017
.
21.
Y. M.
Li
,
Z. F.
Li
, and
J. M.
Yang
, “
Tomography-like flow visualization of a hypersonic inward-turning inlet
,”
Chin. J. Aeronaut.
34
,
44
49
(
2021
).
22.
E. L.
Zhang
,
Z. F.
Li
,
Y. M.
Li
, and
J. M.
Yang
, “
Three-dimensional shock interactions and vortices on a V-shaped blunt leading edge
,”
Phys. Fluids
31
,
086102
(
2019
).
23.
S. J.
Liu
,
D. K.
Kang
,
C.
Yan
,
M.
Sun
, and
Z. H.
Jiang
, “
Passive flow control for heat flux reduction on V-shaped blunt leading edges
,” in
13th International Conference on Mechanical and Aerospace Engineering
(
IEEE
,
2022
), pp.
108
113
.
24.
D. K.
Kang
,
C.
Yan
,
S. J.
Liu
,
Z. W.
Wang
, and
Z. H.
Jiang
, “
Modelling and shock control for a V-shaped blunt leading edge
,”
J. Fluid Mech.
(unpublished).
25.
G. H.
Furumoto
,
X.
Zhong
, and
J. C.
Skiba
, “
Numerical studies of real–gas effects on two–dimensional hypersonic shock–wave/boundary–layer interaction
,”
Phys. Fluids
9
,
191
210
(
1997
).
26.
M. R.
Malik
and
E. C.
Anderson
, “
Real gas effects on hypersonic boundary–layer stability
,”
Phys. Fluids
3
,
803
821
(
1991
).
27.
J. R.
Maus
,
B. J.
Griffith
,
K. Y.
Szema
, and
J. T.
Best
, “
Hypersonic Mach number and real gas effects on space shuttle orbiteraerodynamics
,”
J. Spacecr. Rockets
21
,
136
141
(
1984
).
28.
K. J.
Weilmuenster
,
P. A.
Gnoffo
, and
F. A.
Greene
, “
Navier-Stokes simulations of the shuttle orbiter aerodynamic characteristics with emphasis on pitch trim and body flap
,” AIAA Paper No. 93-2814,
1993
.
29.
B.
Hassan
,
G. V.
Candler
, and
D. R.
Olynick
, “
The effect of thermochemical non-equilibrium on the aerodynamics of aerobraking vehicles
,” AIAA Paper No. 92-2877,
1992
.
30.
C.
Park
, “
Assessment of a two-temperature kinetic model for dissociating and weakly ionizing nitrogen
,”
J. Thermophys. Heat Transfer
2
,
8
16
(
1988
).
31.
C.
Park
,
T. H.
John
, and
L. J.
Richard
, “
Chemical-kinetic problems of future NASA missions
,” AIAA Paper No. 91-0464,
1991
.
32.
R. A.
Mitcheltree
and
P. A.
Gnoffo
, “
Wake flow about the mars pathfinder entry vehicle
,”
J. Spacecr. Rockets
32
,
771
776
(
1995
).
33.
K.
Zhong
,
C.
Yan
,
S. S.
Chen
,
X. Y.
Wang
, and
S. J.
Ju
, “
Numerical study on the aerothermodynamics of different heatshield configurations for mars entry capsules
,”
Acta Astronaut.
157
,
189
198
(
2019
).
34.
D. W.
Liang
,
B.
Li
, and
W.
Rong
, “
Thermodynamic characteristics of thermally perfect gas and solution of N-S equations
,”
J. Nanjing Univ. Aeronaut. Astronaut.
35
,
424
429
(
2003
).
35.
Z. H.
Jiang
,
C.
Yan
,
J.
Yu
,
F.
Qu
, and
L. B.
Ma
, “
Effective high-order solver with thermally perfect gas model for hypersonic heating prediction
,”
Appl. Therm. Eng.
99
,
147
159
(
2016
).
36.
Z. H.
Jiang
and
C.
Yan
, “
On the use of thermally perfect gas model for heating prediction of laminar and turbulent SWBLI
,”
Aerosp. Sci. Technol.
95
,
105484
(
2019
).
37.
J.
Wang
,
Z. F.
Li
,
Z. Y.
Zhang
, and
J. M.
Yang
, “
Shock interactions on V-shaped blunt leading edges with various conic crotches
,”
AIAA J.
58
,
1407
1411
(
2020
).
38.
J. A.
Fay
and
F. R.
Riddell
, “
Theory of stagnation point heat transfer in dissociated air
,”
J. Aerosp. Sci.
25
,
73
85
(
1958
).
39.
R.
Yadav
,
G.
Velidi
, and
U.
Guven
, “
Aerothermodynamics of generic re-entry vehicle with a series of aerospikes at nose
,”
Acta Astronaut.
96
,
1
10
(
2014
).
40.
G.
Narayana
and
S.
Selvaraj
, “
Attenuation of pulsation and oscillation using a disk at mid-section of spiked blunt body
,”
Phys. Fluids
32
,
116106
(
2020
).
41.
K. B.
Yuceil
and
D. S.
Dolling
, “
Nose cavity effects on blunt body pressure and temperatures at Mach 5
,”
J. Thermophys. Heat Transfer
9
,
612
619
(
1995
).
42.
K.
Sharma
and
M. T.
Nair
, “
Combination of counterflow jet and cavity for heat flux and drag reduction
,”
Phys. Fluids
32
,
056107
(
2020
).
43.
C. H. E.
Warren
, “
An experimental investigation of the effect of ejecting a coolant gas at the nose of a bluff body
,”
J. Fluid Mech.
8
,
400
417
(
2006
).
44.
Y. J.
Hong
,
D. K.
Wang
,
Q.
Li
, and
J. F.
Ye
, “
Interaction of single-pulse laser energy with bow shock in hypersonic flow
,”
Chin. J. Aeronaut.
27
,
241
247
(
2014
).
45.
B.
Sudarshan
,
S.
Deep
,
V.
Jayaram
,
G.
Jagadeesh
, and
S.
Saravanan
, “
Experimental study of forward-facing cavity with energy deposition in hypersonic flow conditions
,”
Phys. Fluids
31
,
106105
(
2019
).
46.
W.
Huang
,
Z.
Chen
,
L.
Yan
,
B.
Yan
, and
Z.
Du
, “
Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: A review
,”
Prog. Aerosp. Sci.
105
,
31
39
(
2019
).
47.
Z. G.
Wang
,
X. W.
Sun
,
W.
Huang
,
S. B.
Li
, and
L.
Yan
, “
Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows: A survey
,”
Acta Astronaut.
129
,
95
110
(
2016
).
48.
W.
Huang
, “
A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations
,”
J. Zhejiang Univ.-Sci. A
16
,
551
561
(
2015
).
49.
X. Y.
Zhong
,
W.
Huang
,
L.
Yan
,
H.
Wu
, and
Z. B.
Du
, “
Investigation on the adaptive control of shock wave/turbulent boundary layer interaction based on the secondary circulation jets
,”
Acta Astronaut.
198
,
233
250
(
2022
).
50.
W.
Huang
,
H.
Wu
,
Y. G.
Yang
,
L.
Yan
, and
S. B.
Li
, “
Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows
,”
Acta Astronaut.
174
,
103
122
(
2020
).
51.
X. W.
Sun
,
W.
Huang
,
M.
Ou
,
R. R.
Zhang
, and
S. B.
Li
, “
A survey on numerical simulations of drag and heat reduction mechanism in supersonic/hypersonic flows
,”
Chin. J. Aeronaut.
32
,
771
784
(
2019
).
52.
Z. Y.
Zhang
, “
Shock interactions and aerothermal heating/pressure behaviors on V-shaped blunt leading edges
,” Ph.D. thesis (
University of Science and Technology of China
,
2020
).
53.
X. Y.
Wang
,
C.
Yan
,
S. J.
Ju
,
Y. K.
Zheng
, and
J.
Yu
, “
Uncertainty analysis of laminar and turbulent aeroheating predictions for Mars entry
,”
Int. J. Heat Mass Transfer
112
,
533
543
(
2017
).
54.
S. S.
Chen
,
C.
Yan
,
K.
Zhong
,
H. C.
Xue
, and
E. L.
Li
, “
A novel flux splitting scheme with robustness and low dissipation for hypersonic heating prediction
,”
Int. J. Heat Mass Transfer
127
,
126
137
(
2018
).
55.
K.
Zhong
,
C.
Yan
,
S. S.
Chen
,
T. X.
Zhang
, and
S.
Lou
, “
Aerodisk effects on drag reduction for hypersonic blunt body with an ellipsoid nose
,”
Aerosp. Sci. Technol.
86
,
599
612
(
2019
).
56.
P. L.
Roe
, “
Approximate Riemann solvers, parameter vectors, and difference schemes
,”
J. Comput. Phys.
43
,
357
372
(
1981
).
57.
B.
van Leer
, “
Towards the ultimate conservative difference scheme
,”
J. Comput. Phys.
32
,
101
136
(
1979
).
58.
S.
Yoon
and
A.
Jameson
, “
Low-upper Gauss-Seidel method for the Euler and Navier-Stokes equations
,”
AIAA J.
26
,
1025
1026
(
1988
).
59.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
60.
M.
Ou
,
L.
Yan
,
W.
Huang
,
S. B.
Li
, and
L. Q.
Li
, “
Detailed parametric investigations on drag and heat flux reduction induced by a combinational spike and opposing jet concept in hypersonic flows
,”
Int. J. Heat Mass Transfer
126
,
10
31
(
2018
).
61.
S.
Li
,
D. K.
Kang
,
S. J.
Liu
,
Z. W.
Wang
,
Z. H.
Jiang
, and
C.
Yan
, “
Investigation on the influence of real gas effects on the aerodynamic characteristics of V-shaped blunt leading edge
,” in
2nd Chinese Conference of Aerodynamics, Tianjin, China
(
2022
).
62.
S. B.
Li
,
W.
Huang
,
J.
Lei
, and
Z. G.
Wang
, “
Drag and heat reduction mechanism of the porous opposing jet for variable blunt hypersonic vehicles
,”
Int. J. Heat Mass Transfer
126
,
1087
1098
(
2018
).
63.
R. R.
Zhang
,
W.
Huang
,
L. Q.
Li
,
L.
Yan
, and
R.
Moradi
, “
Drag and heat flux reduction induced by the pulsed counterflowing jet with different periods on a blunt body in supersonic flows
,”
Int. J. Heat Mass Transfer
127
,
503
512
(
2018
).
You do not currently have access to this content.