The flow near the stagnation streamline of a blunt body is often attracted and analyzed by using the approximation of local similarity, which reduces the equations of motion to a system of ordinary differential equations. To efficiently calculate the stagnation-streamline parameters in hypersonic magnetohydrodynamic (MHD) flows, an improved quasi-one-dimensional model for MHD flows is developed in the present paper. The Lorentz force is first incorporated into the original dimensionally reduced Navier–Stokes equations to compensate for its effect. Detailed comparisons about the shock standoff distance and the stagnation point heat flux are conducted with the two-dimensional Navier–Stokes calculations for flows around the orbital reentry experiment model, including gas flows in thermochemical nonequilibrium under different magnetic field strengths. Results show that the shock curvature should be considered in the quasi-one-dimensional model to prevent accuracy reduction due to the deviation from the local similarity assumption, particularly for hypersonic MHD flows, where the shock standoff distance will increase with larger magnetic strength. Then, the shock curvature parameter is introduced to compensate for the shock curvature effect. A good agreement between the improved quasi-one-dimensional and the two-dimensional full-field simulations is achieved, indicating that the proposed model enables an efficient and reliable evaluation of stagnation-streamline quantities under hypersonic MHD flows.

1.
E.
Resler
, Jr.
and
W. R.
Sears
, “
The prospects for magneto-aerodynamics
,”
J. Aerosp. Sci.
25
,
235
245
(
1958
).
2.
W. B.
Bush
, “
Magnetohydrodynamic-hypersonic flow past a blunt body
,”
J. Aerosp. Sci.
25
,
685
690
(
1958
).
3.
R. W.
Ziemer
and
W. B.
Bush
, “
Magnetic field effects on bow shock stand-off distance
,”
Phys. Rev. Lett.
1
,
58
(
1958
).
4.
G.
Ludford
and
J. D.
Murray
, “
On the flow of a conducting fluid past a magnetized sphere
,”
J. Fluid Mech.
7
,
516
528
(
1960
).
5.
J.
Poggie
and
D. V.
Gaitonde
, “
Magnetic control of flow past a blunt body: Numerical validation and exploration
,”
Phys. Fluids
14
,
1720
1731
(
2002
).
6.
Y.
Takizawa
,
S.
Sato
,
T.
Abe
, and
D.
Konigorski
, “
Electro-magnetic effect on shock layer structure in reentry-related high-enthalpy flow
,” AIAA Paper No. 2004-2162,
2004
, p.
2162
.
7.
A.
Gülhan
,
B.
Esser
,
U.
Koch
,
F.
Siebe
,
J.
Riehmer
,
D.
Giordano
, and
D.
Konigorski
, “
Experimental verification of heat-flux mitigation by electromagnetic fields in partially-ionized-argon flows
,”
J. Spacecr. Rockets
46
,
274
283
(
2009
).
8.
A.
Cristofolini
,
C.
Borghi
,
G.
Neretti
,
F.
Battista
,
A.
Schettino
,
E.
Trifoni
,
F.
De Filippis
,
A.
Passaro
, and
D.
Baccarella
, “
MHD interaction around a blunt body in a hypersonic unseeded air flow: Experimental results and numerical rebuilding
,” AIAA Paper No. 2012-5804,
2012
, p.
5804
.
9.
A.
Lefevre
,
D. E.
Gildfind
,
R. J.
Gollan
,
P. A.
Jacobs
,
T. J.
McIntyre
, and
C. M.
James
, “
Expansion tube experiments of magnetohydrodynamic aerobraking for superorbital earth reentry
,”
AIAA J.
59
,
3228
3240
(
2021
).
10.
D. E.
Gildfind
,
D.
Smith
,
A.
Lefevre
,
P. A.
Jacobs
, and
T. J.
McIntyre
, “
Magnetohydrodynamic aerobraking shock stand-off measurements with flight representative electrodynamic boundary conditions
,”
AIAA J.
60
,
41
55
(
2022
).
11.
A.
Lefevre
,
D.
Gildfind
,
R.
Gollan
,
P.
Jacobs
,
T.
McIntyre
, and
C. M.
James
, “
Experimental study of total heat flux mitigation using magnetohydrodynamic flow control in superorbital earth reentry flight
,” AIAA Paper No. 2022-0828,
2022
, p.
0828
.
12.
M.
Brio
and
C. C.
Wu
, “
An upwind differencing scheme for the equations of ideal magnetohydrodynamics
,”
J. Comput. Phys.
75
,
400
422
(
1988
).
13.
S.-H.
Han
,
J.-I.
Lee
, and
K. H.
Kim
, “
Accurate and robust pressure weight advection upstream splitting method for magnetohydrodynamics equations
,”
AIAA J.
47
,
970
981
(
2009
).
14.
G.
Zha
,
Y.
Shen
, and
B.
Wang
, “
An improved low diffusion E-CUSP upwind scheme
,”
Comput. Fluids
48
,
214
220
(
2011
).
15.
Z.
Zhou
,
Z.
Zhang
,
Z.
Gao
,
K.
Xu
, and
C.-H.
Lee
, “
Numerical investigation on mechanisms of mhd heat flux mitigation in hypersonic flows
,”
Aerospace
9
,
548
(
2022
).
16.
H. A.
Muir
and
N.
Nikiforakis
, “
Numerical modeling of imposed magnetohydrodynamic effects in hypersonic flows
,”
Phys. Fluids
34
,
107114
(
2022
).
17.
H.
Olivier
, “
A theoretical model for the shock stand-off distance in frozen and equilibrium flows
,”
J. Fluid Mech.
413
,
345
353
(
2000
).
18.
C. Y.
Wen
and
H. G.
Hornung
, “
Non-equilibrium dissociating flow over spheres
,”
J. Fluid Mech.
299
,
389
405
(
1995
).
19.
H. G.
Hornung
, “
Non-equilibrium dissociating nitrogen flow over spheres and circular cylinders
,”
J. Fluid Mech.
53
,
149
176
(
1972
).
20.
N.
Belouaggadia
,
H.
Olivier
, and
R.
Brun
, “
Numerical and theoretical study of the shock stand-off distance in non-equilibrium flows
,”
J. Fluid Mech.
607
,
167
197
(
2008
).
21.
S.
Chen
and
Q. H.
Sun
, “
A quasi-one-dimensional model for hypersonic reactive flow along the stagnation streamline
,”
Chin. J. Aeronaut.
29
,
1517
1526
(
2016
).
22.
Q. Z.
Hong
,
X. Y.
Wang
,
Y.
Hu
, and
Q. H.
Sun
, “
Development of a stagnation streamline model for thermochemical nonequilibrium flow
,”
Phys. Fluids
32
,
046102
(
2020
).
23.
H. C.
Kao
, “
Hypersonic viscous flow near the stagnation streamline of a blunt body. I. A test of local similarity
,”
AIAA J.
2
,
1892
1897
(
1964
).
24.
A.
Klomfass
and
S.
Müller
, “
Calculation of stagnation streamline quantities in hypersonic blunt body flows
,”
Shock Waves
7
,
13
23
(
1997
).
25.
J.
William
,
J.
Vérant
, and
P.
Sagnier
, “
An efficient numerical tool for blunted bodies stagnation line rebuilding with weakly ionized thermochemical nonequilibrium flows
,” in
Proceedings of the 15th IMACS-World Congress on Scientific Computation, Modeling and Applied Mathematics
(
Information Scientifique et Technique et Publications
,
1997
).
26.
C.
Lee
, “
Flow field analysis on the stagnation streamline of a blunt body
,”
Int. J. Aeronaut. Space Sci.
17
,
149
156
(
2016
).
27.
S.
Peng
,
K.
Jin
, and
X.
Zheng
, “
Study on validity of low-magnetic-Reynolds-number assumption for hypersonic magnetohydrodynamic control
,”
AIAA J.
60
,
6536
6547
(
2022
).
28.
J. D.
Anderson
,
Hypersonic and High Temperature Gas Dynamics
, 2nd ed., AIAA Education Series (
AIAA
,
2006
).
29.
M. G.
Dunn
and
S.
Kang
, “
Theoretical and experimental studies of reentry plasmas
,” Technical Report No. NASA-CR-2232 (
NASA
,
1973
).
30.
C.
Park
, “
Assessment of two-temperature kinetic model for ionizing air
,”
J. Thermophys. Heat Transfer
3
,
233
244
(
1989
).
31.
F. G.
Blottner
,
M.
Johnson
, and
M.
Ellis
, “
Chemically reacting viscous flow program for multi-component gas mixtures
,” Technical Report No. SC-RR-70-754 (
Sandia Labs
,
Albuquerque, NM
,
1971
).
32.
C.
Wilke
, “
A viscosity equation for gas mixtures
,”
J. Chem. Phys.
18
,
517
519
(
1950
).
33.
G. H.
Furumoto
,
X.
Zhong
, and
J. C.
Skiba
, “
Numerical studies of real-gas effects on two-dimensional hypersonic shock-wave/boundary-layer interaction
,”
Phys. Fluids
9
,
191
210
(
1997
).
34.
P. A.
Gnoffo
,
Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium
(
National Aeronautics and Space Administration, Office of Management
,
1989
), Vol.
2867
.
35.
Y.
Li
,
Q.
Wang
,
K.
Luo
, and
W.
Zhao
, “
Formation of bow shock waves around a blunt body in magnetohydrodynamics flows
,”
J. Spacecr. Rockets
59
,
1372
1379
(
2022
).
36.
K. H.
Kim
,
C.
Kim
, and
O.-H.
Rho
, “
Methods for the accurate computations of hypersonic flows. I. Ausmpw+ scheme
,”
J. Comput. Phys.
174
,
38
80
(
2001
).
37.
A.
Jameson
and
S.
Yoon
, “
Lower-upper implicit schemes with multiple grids for the Euler equations
,”
AIAA J.
25
,
929
935
(
1987
).
38.
T.
Fujino
and
M.
Ishikawa
, “
Numerical simulation of control of plasma flow with magnetic field for thermal protection in earth reentry flight
,”
IEEE Trans. Plasma Sci.
34
,
409
420
(
2006
).
39.
T.
Tanifuji
,
A.
Matsuda
,
K.
Wasai
,
H.
Otsu
,
H.
Yamasaki
,
D.
Konigorski
, and
T.
Abe
, “
Expansion tube experiment of applied magnetic field effect on reentry plasma
,” AIAA Paper No. 2008-1113,
2008
, p.
1113
.
40.
Y.
Li
,
Q.
Wang
,
K.
Luo
,
J.
Li
, and
W.
Zhao
, “
Theoretical analysis on hypersonic mhd shock stand-off distance of blunt body
,”
Chin. J. Theor. Appl. Mech.
53
,
2493
2500
(
2021
).
41.
M. S.
Ding
,
Y. A.
Fu
,
T. S.
Gao
,
D. W.
Zhong
,
J.
Tao
, and
L. Q.
Zong
, “
Influence of hall effect on hypersonic magnetohydrodynamic control
,”
Acta Phys. Sin.
69
,
214703
(
2020
).
42.
X. D.
Li
,
Z. M.
Hu
, and
Z. L.
Jiang
, “
Numerical investigation on the thermal protection mechanism for blunt body with forward-facing cavity
,”
Sci. China Technol. Sci.
59
,
1120
1129
(
2016
).
43.
H.-M.
Damevin
and
K. A.
Hoffmann
, “
Numerical simulations of magnetic flow control in hypersonic chemically reacting flows
,”
J. Thermophys. Heat Transfer
16
,
498
507
(
2002
).
44.
T.
Fujino
,
T.
Yoshino
, and
M.
Ishikawa
, “
Numerical analysis of reentry trajectory coupled with magnetohydrodynamics flow control
,”
J. Spacecr. Rockets
45
,
911
920
(
2008
).
45.
J. M.
Schramm
,
K.
Hannemann
,
W.
Beck
, and
S.
Karl
, “
Cylinder shock layer density profiles measured in high enthalpy flows in heg
,” AIAA Paper No. 2002-2913,
2002
, p.
2913
.
46.
X.
Ren
,
J.
Yuan
,
B.
He
,
M.
Zhang
, and
G.
Cai
, “
Grid criteria for numerical simulation of hypersonic aerothermodynamics in transition regime
,”
J. Fluid Mech.
881
,
585
601
(
2019
).
You do not currently have access to this content.