In this paper, the method of generating inflow turbulence based on turbulence fluctuation library (TFL) in direct numerical simulation (DNS) of the hypersonic turbulent boundary layer (TBL) is investigated. The application of the TFL method to the DNS of a supersonic TBL shows that, although there are significant differences in freestream between the TFL and the target TBL, the flow could successfully develop to the target TBL downstream as the fluctuations of TFL are suitably scaled and added to the DNS inflow. However, there is a “transition”-like recovery process from the inflow to the target turbulence. To deal with the defects of the thermodynamic fluctuations scaling laws in the current TFL method under the hypersonic TBL, new thermodynamic fluctuations scaling laws are theoretically derived by introducing the generalized Reynolds analogy. The application in the DNS of Mach 7.25 TBL shows that the new scaling laws for thermodynamic fluctuations are more rational and accurate than the previous ones. Furthermore, the study on the recovery process shows that the matching degree between the TFL and the target TBL on the friction Reynolds number (Reτ) is the dominant factor in determining the length of recovery distance. Guaranteeing the similar Reτ of the TFL and the target TBL can make the two possess similar coherence structures, which can avoid the distortion of the coherence structures at the inflow after spanwise and normal interpolation, prevent the process of Reynolds stress decay and readjustment downstream the inflow, and finally effectively shorten the recovery distance.

1.
G. R.
Tabor
and
M. H.
Baba-Ahmadi
, “
Inlet conditions for large eddy simulation: A review
,”
Comput. Fluids
39
,
553
(
2010
).
2.
N. S.
Dhamankar
,
G. A.
Blaisdell
, and
A. S.
Lyrintzis
, “
Overview of turbulent inflow boundary conditions for large-eddy simulations
,”
AIAA J.
56
,
1317
(
2018
).
3.
H. F.
Fasel
,
U.
Rist
, and
U.
Konzelmann
, “
Numerical investigation of the three-dimensional development in boundary-layer transition
,”
AIAA J.
28
,
29
(
1990
).
4.
T.
Sayadi
,
C. W.
Hamman
, and
P.
Moin
, “
Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers
,”
J. Fluid Mech.
724
,
480
(
2013
).
5.
X. I. A.
Yang
,
J.
Sadique
,
R.
Mittal
, and
C.
Meneveau
, “
Integral wall model for large eddy simulations of wall-bounded turbulent flows
,”
Phys. Fluids
27
,
025112
(
2015
).
6.
N. J.
Mullenix
,
D. V.
Gaitonde
, and
M. R.
Visbal
, “
Spatially developing supersonic turbulent boundary layer with a body-force-based method
,”
AIAA J.
51
,
1805
(
2013
).
7.
S.
Stolz
and
N. A.
Adams
, “
Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique
,”
Phys. Fluids
15
,
2398
(
2003
).
8.
S.
Xu
and
M. P.
Martin
, “
Assessment of inflow boundary conditions for compressible turbulent boundary layers
,”
Phys. Fluids
16
,
2623
(
2004
).
9.
G.
Urbin
and
D.
Knight
, “
Large-eddy simulation of a supersonic boundary layer using an unstructured grid
,”
AIAA J.
39
,
1288
(
2001
).
10.
T. S.
Lund
,
X.
Wu
, and
K. D.
Squires
, “
Generation of turbulent inflow data for spatially-developing boundary layer simulations
,”
J. Comput. Phys.
140
,
233
(
1998
).
11.
A.
Ceci
,
A.
Palumbo
,
J.
Larsson
, and
S.
Pirozzoli
, “
Numerical tripping of high-speed turbulent boundary layers
,”
Theor. Comput. Fluid Dyn.
36
,
865
(
2022
).
12.
M.
Klein
,
A.
Sadiki
, and
J.
Janicka
, “
A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations
,”
J. Comput. Phys.
186
,
652
(
2003
).
13.
M. C.
Adler
,
D. R.
Gonzalez
,
C. M.
Stack
, and
D. V.
Gaitonde
, “
Synthetic generation of equilibrium boundary layer turbulence from modeled statistics
,”
Comput. Fluids
165
,
127
(
2018
).
14.
Y.
Wang
,
G.
Vita
,
B.
Fraga
,
C.
Lyu
,
J.
Wang
, and
H.
Hemida
, “
Influence of turbulent inlet boundary condition on large eddy simulation over a flat plate boundary layer
,”
Int. J. Comput. Fluid Dyn.
36
,
232
(
2022
).
15.
D.
Martinez-Sanchis
,
A.
Sternin
,
D.
Sternin
,
O.
Haidn
, and
M.
Tajmar
, “
Analysis of periodic synthetic turbulence generation and development for direct numerical simulations applications
,”
Phys. Fluids
33
,
125130
(
2021
).
16.
M.
Hao
,
J.
Hope-Collins
, and
L.
di Mare
, “
Generation of turbulent inflow data from realistic approximations of the covariance tensor
,”
Phys. Fluids
34
,
115140
(
2022
).
17.
X.
Liu
,
P.
Chaitanya
, and
P.
Joseph
, “
Proper orthogonal decomposition method for the prediction of fan broadband interaction noise
,”
AIAA J.
60
,
5336
(
2022
).
18.
G.
Wu
,
L.
Fang
, and
J.
Zhang
, “
Numerical investigation and parametric analysis of an attached eddy model applied to inlet condition
,”
Phys. Fluids
34
,
115143
(
2022
).
19.
P.
Wang
,
X. S.
Bai
,
M.
Wessman
, and
J.
Klingmann
, “
Large eddy simulation and experimental studies of a confined turbulent swirling flow
,”
Phys. Fluids
16
,
3306
(
2004
).
20.
P.
Wang
and
X. S.
Bai
, “
Large eddy simulations of turbulent swirling flows in a dump combustor: A sensitivity study
,”
Int. J. Numer. Methods Fluids
47
,
99
(
2005
).
21.
C. D.
Pierce
and
P.
Moin
, “
Method for generating equilibrium swirling inflow conditions
,”
AIAA J.
36
,
1325
(
1998
).
22.
J. U.
Schluter
,
X.
Wu
,
S.
Kim
,
S.
Shankaran
,
J. J.
Alonso
, and
H.
Pitsch
, “
A framework for coupling Reynolds-averaged with large-eddy simulations for gas turbine applications
,” ASME
J. Fluids Eng.
127
,
806
(
2005
).
23.
M. P.
Martin
, “
Direct numerical simulation of hypersonic turbulent boundary layers. I. Initialization and comparison with experiments
,”
J. Fluid Mech.
570
,
347
(
2007
).
24.
L.
Duan
,
I.
Beekman
, and
M. P.
Martín
, “
Direct numerical simulation of hypersonic turbulent boundary layers. II. Effect of wall temperature
,”
J. Fluid Mech.
655
,
419
(
2010
).
25.
L.
Duan
,
I.
Beekman
, and
M. P.
Martín
, “
Direct numerical simulation of hypersonic turbulent boundary layers. III. Effect of Mach number
,”
J. Fluid Mech.
672
,
245
(
2011
).
26.
L.
Duan
and
M. P.
Martín
, “
Direct numerical simulation of hypersonic turbulent boundary layers. IV. Effect of high enthalpy
,”
J. Fluid Mech.
684
,
25
(
2011
).
27.
A.
Keating
,
U.
Piomelli
,
E.
Balaras
, and
H.-J.
Kaltenbach
, “
A priori and a posteriori tests of inflow conditions for large-eddy simulation
,”
Phys. Fluids
16
,
4696
(
2004
).
28.
J. U.
Schlüter
,
H.
Pitsch
, and
P.
Moin
, “
Large-eddy simulation inflow conditions for coupling with Reynolds-averaged flow solvers
,”
AIAA J.
42
,
478
(
2004
).
29.
S.
Pirozzoli
,
F.
Grasso
, and
T. B.
Gatski
, “
Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25
,”
Phys. Fluids
16
,
530
(
2004
).
30.
F.
Shi
,
Z.
Gao
,
C.
Jiang
, and
C.-H.
Lee
, “
Numerical investigation of shock-turbulent mixing layer interaction and shock-associated noise
,”
Phys. Fluids
33
,
025105
(
2021
).
31.
P.
Guo
,
F.
Shi
,
Z.
Gao
,
C.
Jiang
,
C.-H.
Lee
, and
C.
Wen
, “
Heat transfer and behavior of the Reynolds stress in Mach 6 boundary layer transition induced by first-mode oblique waves
,”
Phys. Fluids
34
,
104116
(
2022
).
32.
H.
Liu
,
Z.
Gao
,
C.
Jiang
, and
C.-H.
Lee
, “
Studies of combustion effects on near-wall turbulence in supersonic flows by large eddy simulation
,”
Aerosp. Sci. Technol.
107
,
106328
(
2020
).
33.
F.
Shi
,
Z.
Gao
,
C.
Jiang
, and
C.-H.
Lee
, “
Investigation on noise from shock/isotropic turbulence interaction using direct numerical simulation
,”
J. Sound Vib.
488
,
115633
(
2020
).
34.
R.
Borges
,
M.
Carmona
,
B.
Costa
, and
W. S.
Don
, “
An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws
,”
J. Comput. Phys.
227
,
3191
(
2008
).
35.
C.-W.
Shu
and
S.
Osher
, “
Efficient implementation of essentially non-oscillatory shock-capturing schemes
,”
J. Comput. Phys.
77
,
439
(
1988
).
36.
K. J.
Franko
and
S. K.
Lele
, “
Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers
,”
J. Fluid Mech.
730
,
491
(
2013
).
37.
H. H.
Fernholz
and
P. J.
Finleyt
, “
The incompressible zero-pressure-gradient turbulent boundary layer: An assessment of the data
,”
Prog. Aerosp. Sci.
32
,
245
(
1996
).
38.
Y.-S.
Zhang
,
W.-T.
Bi
,
F.
Hussain
, and
Z.-S.
She
, “
A generalized Reynolds analogy for compressible wall-bounded turbulent flows
,”
J. Fluid Mech.
739
,
392
(
2013
).
39.
F.
Tong
,
C.
Yu
,
Z.
Tang
, and
X.
Li
, “
Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner: Turning angle effects
,”
Comput. Fluids
149
,
56
(
2017
).
40.
D. J.
Glaze
and
S. H.
Frankel
, “
Stochastic inlet conditions for large-eddy simulation of a fully turbulent jet
,”
AIAA J.
41
,
1064
(
2003
).
41.
J.-L.
Aider
,
A.
Danet
, and
M.
Lesieur
, “
Large-eddy simulation applied to study the influence of upstream conditions on the time-dependant and averaged characteristics of a backward-facing step flow
,”
J. Turbul.
8
,
N51
(
2007
).
42.
S. E.
Guarini
,
R. D.
Moser
,
K.
Shariff
, and
A.
Wray
, “
Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5
,”
J. Fluid Mech.
414
,
1
(
2000
).
43.
M. V.
Morkovin
, “
Effects of compressibility on turbulent flows
,”
Mech. Turbul.
pp.
367
380
(
1962
).
44.
M. J.
Ringuette
,
P.
Bookey
,
C.
Wyckham
, and
A. J.
Smits
, “
Experimental study of a Mach 3 compression ramp interaction at Reθ = 2400
,”
AIAA J.
47
,
373
(
2009
).
45.
J.
Gaviglio
, “
Reynolds analogies and experimental study of heat transfer in the supersonic boundary layer
,”
Int. J. Heat Mass Transfer
30
,
911
(
1987
).
46.
M.
Yu
and
C.
Xu
, “
Predictive models for near-wall velocity and temperature fluctuations in supersonic wall-bounded turbulence
,”
J. Fluid Mech.
937
,
A32
(
2022
).
47.
O. J. H.
Williams
,
D.
Sahoo
,
M. L.
Baumgartner
, and
A. J.
Smits
, “
Experiments on the structure and scaling of hypersonic turbulent boundary layers
,”
J. Fluid Mech.
834
,
237
(
2017
).
You do not currently have access to this content.