A modified Cylindrical-Focused Laser Differential Interferometer (CFLDI) system was used to measure the density fluctuations generated by a Mach 6 turbulent boundary layer on a flat plate. The amplitude, spectral statistics, and correlation scale of the density fluctuations were analyzed at different wall-normal heights throughout the boundary layer. Direct numerical simulation was performed under the similar condition to verify the experimental results. The results show that the CFLDI system herewith can accurately represent the statistical characteristics of density fluctuations with a bandwidth of 3–200 kHz in the hypersonic turbulent boundary layer. As the distance from the wall increases, the amplitude of density fluctuations keeps increasing until y/δ ≈ 0.8 and levels off after y/δ ≈ 1.5. As the measurement position moves into the freestream, the characteristic frequency of the density fluctuation decreases rapidly, while its integral timescale gradually increases. Similar phenomena were also observed for pressure fluctuations.

1.
J.
Laufer
, “
Some statistical properties of the pressure field radiated by a turbulent boundary layer
,”
Phys. Fluids
7
(
8
),
1191
(
1964
).
2.
I. E.
Beckwith
and
C. G.
Miller
, “
Aerothermodynamics and transition in high-speed wind tunnels at NASA Langley
,”
Annu. Rev. Fluid Mech.
22
(
1
),
419
(
1990
).
3.
S. P.
Schneider
, “
Development of hypersonic quiet tunnels
,”
J. Spacecr. Rockets
45
(
4
),
641
(
2008
).
4.
C.
Lee
and
X.
Jiang
, “
Flow structures in transitional and turbulent boundary layers
,”
Phys. Fluids
31
(
11
),
111301
(
2019
).
5.
S. J.
Beresh
,
J. F.
Henfling
,
R. W.
Spillers
, and
B. O. M.
Pruett
, “
Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer
,”
Phys. Fluids
23
(
7
),
075110
(
2011
).
6.
D. A.
Buchta
,
S. J.
Laurence
, and
T. A.
Zaki
, “
Assimilation of wall-pressure measurements in high-speed flow over a cone
,”
J. Fluid Mech.
947
,
A51
(
2022
).
7.
J.
Wu
and
R.
Radespiel
, “
Investigation of instability waves in a Mach 3 laminar boundary layer
,”
AIAA J.
53
(
12
),
3712
(
2015
).
8.
K.
Kokmanian
,
D. C.
Barros
,
M.
Hultmark
, and
P.
Dupont
, “
Heat transfer measurements of a nanoscale hot-wire in supersonic flow
,”
Exp. Fluids
62
(
8
),
171
(
2021
).
9.
D. B.
Barker
and
M. E.
Fourney
, “
Measuring fluid velocities with speckle patterns
,”
Opt. Lett.
1
(
4
),
135
(
1977
).
10.
T. D.
Dudderar
and
P. G.
Simpkins
, “
Laser speckle photography in a fluid medium
,”
Nature
270
(
5632
),
45
(
1977
).
11.
R.
Grousson
and
S.
Mallick
, “
Study of flow pattern in a fluid by scattered laser light
,”
Appl. Opt.
16
(
9
),
2334
(
1977
).
12.
O. J. H.
Williams
,
D.
Sahoo
,
M. L.
Baumgartner
, and
A. J.
Smits
, “
Experiments on the structure and scaling of hypersonic turbulent boundary layers
,”
J. Fluid Mech.
834
,
237
(
2018
).
13.
Y.
Zhu
,
W.
Zhu
,
D.
Gu
,
C.
Lee
, and
C. R.
Smith
, “
Transitional flow structures in heated hypersonic boundary layers
,”
Phys. Fluids
34
(
5
),
054114
(
2022
).
14.
N. J.
Parziale
,
J. E.
Shepherd
, and
H. G.
Hornung
, “
Free-stream density perturbations in a reflected-shock tunnel
,”
Exp. Fluids
55
(
2
),
1665
(
2014
).
15.
B.
Birch
,
D.
Buttsworth
, and
F.
Zander
, “
Measurements of freestream density fluctuations in a hypersonic wind tunnel
,”
Exp. Fluids
61
(
7
),
158
(
2020
).
16.
J. M.
Lawson
,
M. C.
Neet
,
J. W.
Hofferth
, and
J. M.
Austin
, “
Supersonic freestream density fluctuations from focused laser differential interferometry and pitot-probe measurements
,”
AIAA J.
60
(
9
),
5173
(
2022
).
17.
N. J.
Parziale
,
J. E.
Shepherd
, and
H. G.
Hornung
, “
Observations of hypervelocity boundary-layer instability
,”
J. Fluid Mech.
781
,
87
(
2015
).
18.
Y. D.
Xiong
,
T.
Yu
,
L. Q.
Lin
,
J. Q.
Zhao
, and
J.
Wu
, “
Nonlinear instability characterization of hypersonic laminar boundary layer
,”
AIAA J.
58
(
12
),
5254
(
2020
).
19.
T.
Yu
,
Y.
Xiong
,
J.
Zhao
, and
J.
Wu
, “
Application of focused laser differential interferometer to hypersonic boundary-layer instability study
,”
Chin. J. Aeronaut.
34
(
5
),
17
(
2021
).
20.
A. W.
Houpt
and
S. B.
Leonov
, in
2018 Plasma Dynamics and Lasers Conference
(
American Institute of Aeronautics and Astronautics
,
2018
).
21.
A.
Houpt
and
S.
Leonov
, “
Cylindrical focused laser differential interferometer
,”
AIAA J.
59
(
4
),
1142
(
2021
).
22.
K. J.
Hopkins
,
H.
Porat
,
T. J.
McIntyre
,
V.
Wheatley
, and
A.
Veeraragavan
, “
Measurements and analysis of hypersonic tripped boundary layer turbulence
,”
Exp. Fluids
62
(
8
),
164
(
2021
).
23.
E. K.
Benitez
,
M. P.
Borg
,
J. L.
Hill
,
M. T.
Aultman
,
L.
Duan
,
C. L.
Running
, and
J. S.
Jewell
, “
Quantitative focused laser differential interferometry with hypersonic turbulent boundary layers
,”
Appl. Opt.
61
(
31
),
9203
(
2022
).
24.
Z.
Li
,
Y.
Xiong
,
X.
Yuan
,
J.
Chen
,
J.
Zhao
, and
J.
Wu
, “
A-variant design of hypersonic Ludwieg tube wind tunnel
,”
AIAA J.
60
(
7
),
3990
(
2022
).
25.
Z.
Duan
and
Z.
Xiao
, in
7th AIAA Theoretical Fluid Mechanics Conference
(
American Institute of Aeronautics and Astronautics
,
2014
).
26.
N.
Parziale
, “
Slender-body hypervelocity boundary-layer instability
,” Ph.D. thesis (
California Institute of Technology
,
2013
).
27.
F.
Tong
,
S.
Dong
,
J.
Lai
,
X.
Yuan
, and
X.
Li
, “
Wall shear stress and wall heat flux in a supersonic turbulent boundary layer
,”
Phys. Fluids
34
(
1
),
015127
(
2022
).
28.
S.
Dong
,
F.
Tong
,
M.
Yu
,
J.
Chen
,
X.
Yuan
, and
Q.
Wang
, “
Positive and negative pairs of fluctuating wall shear stress and heat flux in supersonic turbulent boundary layers
,”
Phys. Fluids
34
(
8
),
085115
(
2022
).
29.
D. H.
Xu
,
J. C.
Wang
,
C. P.
Yu
,
X. L.
Li
, and
S. Y.
Chen
, “
Contribution of flow topology to the kinetic energy flux in hypersonic turbulent boundary layer
,”
Phys. Fluids
34
(
4
),
046103
(
2022
).
30.
D. H.
Xu
,
J. C.
Wang
,
C. P.
Yu
,
X. L.
Li
, and
S. Y.
Chen
, “
Effect of compressibility on the small-scale structures in hypersonic turbulent boundary layer
,”
Phys. Fluids
34
(
5
),
055121
(
2022
).
31.
M. P.
Martín
,
E. M.
Taylor
,
M.
Wu
, and
V. G.
Weirs
, “
A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence
,”
J. Comput. Phys.
220
(
1
),
270
(
2006
).
32.
E. M.
Taylor
,
M. W.
Wu
, and
P.
Martin
, “
Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence
,”
J. Comput. Phys.
223
(
1
),
384
(
2007
).
33.
C.
Shu
and
S.
Osher
, “
Efficient implementation of essentially non-oscillatory shock-capturing schemes
,”
J. Comput. Phys.
77
(
2
),
439
(
1988
).
34.
S.
Pirozzoli
,
F.
Grasso
, and
T. B.
Gatski
, “
Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25
,”
Phys. Fluids
16
(
3
),
530
(
2004
).
35.
L.
Duan
,
M. M.
Choudhari
, and
C.
Zhang
, “
Pressure fluctuations induced by a hypersonic turbulent boundary layer
,”
J. Fluid Mech.
804
,
578
(
2016
).
36.
K. M.
Casper
,
Turbulent Pressure Fluctuations in a Hypersonic Boundary Layer
(
Purdue University
,
2011
).
37.
M.
Bernardini
,
S.
Pirozzoli
, and
F.
Grasso
, “
The wall pressure signature of transonic shock/boundary layer interaction
,”
J. Fluid Mech.
671
,
288
(
2011
).
38.
L.
Duan
,
M. M.
Choudhari
, and
M. W.
Wu
, “
Numerical study of acoustic radiation due to a supersonic turbulent boundary layer
,”
J. Fluid Mech.
746
,
165
(
2014
).
39.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence, Nachdruck Des Originals Von 1972
(
MIT Press
,
1972
).
You do not currently have access to this content.