Accurate but economical modeling of supersonic turbulent boundary layers is a standing challenge due to the intricate entanglement of temperature, density, and velocity fluctuations on top of the mean-field variation. Application of the van Driest transformation may describe well the mean state but cannot provide detailed flow information. This lack-in modeling coarse and fine-scale variability is addressed by the present study using a stochastic one-dimensional turbulence (ODT) model. ODT is a simulation methodology that represents the evolution of turbulent flow in a low-dimensional stochastic way. In this study, ODT is extended to fully compressible flows. An Eulerian framework and a conservative form of the governing equations serve as the basis of the compressible ODT model. Computational methods for statistical properties based on ODT realizations are also extended to compressible flows, and a comprehensive way of turbulent kinetic energy budget calculation based on compressible ODT is put forward for the first time. Two canonical direct numerical simulation cases of supersonic isothermal-wall channel flow at Mach numbers 1.5 and 3.0 with bulk Reynolds numbers 3000 and 4880, respectively, are used to validate the extended model. A rigorous numerical validation is presented, including the first-order mean statistics, the second-order root mean square statistics, and higher-order turbulent fluctuation statistics. In ODT results, both mean and root mean square profiles are accurately captured in the near-wall region. Near-wall temperature spectra reveal that temperature fluctuations are amplified at all turbulent scales as the effects of compressibility increase. This phenomenon is caused by intensified viscous heating at a higher Mach number, which is indicated by the steeper profiles of viscous turbulent kinetic energy budget terms in the very near-wall region. The low computational cost and predictive capabilities of ODT suggest that it is a promising approach for detailed modeling of highly turbulent compressible boundary layers. Furthermore, it is found that the ODT model requires a Mach-number-dependent increase in a viscous penalty parameter Z in wall-bounded turbulent flows to enable accurate capture of the buffer layer.

1.
M. A.
Leschziner
and
D.
Drikakis
, “
Turbulence modelling and turbulent-flow computation in aeronautics
,”
Aeronaut. J.
106
,
349
(
2016
).
2.
S. E.
Woosley
,
A. R.
Kerstein
,
V.
Sankaran
,
A. J.
Aspden
, and
F. K.
Ropke
, “
Type Ia supernovae: Calculations of turbulent flames using the linear eddy model
,”
Astrophys. J.
704
,
255
(
2009
).
3.
C. H.
Gibson
, “
Fossil temperature, salinity, and vorticity turbulence in the ocean
,” in
Marine Turbulence
, edited by
J. C. J.
Nihoul
(
Elsevier
,
1980
), p.
221
.
4.
J. D.
Fuentes
,
M.
Chamecki
,
R. M. N. d
Santos
,
C. V.
Randow
,
P. C.
Stoy
,
G.
Katul
,
D.
Fitzjarrald
,
A.
Manzi
,
T.
Gerken
,
A.
Trowbridge
,
L. S.
Freire
,
J.
Ruiz-Plancarte
,
J. M. F.
Maia
,
J.
Tóta
,
N.
Dias
,
G.
Fisch
,
C.
Schumacher
,
O.
Acevedo
,
J. R.
Mercer
, and
A. M.
Yañez-Serrano
, “
Linking meteorology, turbulence, and air chemistry in the Amazon rain forest
,”
Bull. Am. Meteorol. Soc.
97
,
2329
(
2016
).
5.
J. D.
Anderson
and
J.
Wendt
,
Computational Fluid Dynamics
(
Springer
,
1995
).
6.
E.
Garnier
,
N. N.
Adams
, and
P.
Sagaut
,
Large Eddy Simulation for Compressible Flows
(
Springer
,
2009
).
7.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
8.
P.
Moin
and
K.
Mahesh
, “
Direct numerical simulation: A tool in turbulence research
,”
Annu. Rev. Fluid Mech.
30
,
539
(
1998
).
9.
P.
Sagaut
,
Large Eddy Simulation for Incompressible Flows
(
Springer
,
2006
).
10.
A. R.
Kerstein
, “
ODT: Stochastic simulation of multi-scale dynamics
,” in
Interdisciplinary Aspects of Turbulence
, edited by
W.
Hillebrandt
and
F.
Kupka
(
Springer
,
Heidelberg
,
2009
), p.
291
.
11.
A. R.
Kerstein
, “
One-dimensional turbulence: Model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows
,”
J. Fluid Mech.
392
,
277
(
1999
).
12.
R.
McDermott
, “
Toward one-dimensional turbulence subgrid closure for large-eddy simulation
,” Ph.D. dissertation (Department of Chemical Engineering,
University of Utah
,
2005
).
13.
A. R.
Kerstein
,
W. T.
Ashurst
,
S.
Wunsch
, and
V.
Nilsen
, “
One-dimensional turbulence: Vector formulation and application to free shear flows
,”
J. Fluid Mech.
447
,
85
(
2001
).
14.
A. R.
Kerstein
and
S.
Wunsch
, “
Simulation of a stably stratified atmospheric boundary layer using one-dimensional turbulence
,”
Boundary-Layer Meteorol.
118
,
325
(
2006
).
15.
M.
Klein
,
C.
Zenker
, and
H.
Schmidt
, “
Small-scale resolving simulations of the turbulent mixing in confined planar jets using one-dimensional turbulence
,”
Chem. Eng. Sci.
204
,
186
(
2019
).
16.
V.
Giddey
,
D. W.
Meyer
, and
P.
Jenny
, “
Modeling three-dimensional scalar mixing with forced one-dimensional turbulence
,”
Phys. Fluids
30
,
125103
(
2018
).
17.
T.
Echekki
,
A. R.
Kerstein
,
T. D.
Dreeben
, and
J.-Y.
Chen
, “
One-dimensional turbulence' simulation of turbulent jet diffusion flames: Model formulation and illustrative applications
,”
Combust. Flame
125
,
1083
(
2001
).
18.
Z.
Jozefik
,
A. R.
Kerstein
,
H.
Schmidt
,
S.
Lyra
,
H.
Kolla
, and
J. H.
Chen
, “
One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS
,”
Combust. Flame
162
,
2999
(
2015
).
19.
J. A.
Medina
,
M. H.
Schmidt
,
F.
Mauss
, and
Z.
Jozefik
, “
Constant volume n-heptane autoignition using one-dimensional turbulence
,”
Combust. Flame
190
,
388
(
2018
).
20.
A.
Movaghar
,
M.
Linne
,
M.
Oevermann
,
F.
Meiselbach
,
H.
Schmidt
, and
A. R.
Kerstein
, “
Numerical investigation of turbulent-jet primary breakup using one-dimensional turbulence
,”
Int. J. Multiphase Flow
89
,
241
(
2017
).
21.
D. O.
Lignell
,
G. C.
Fredline
, and
A. D.
Lewis
, “
Comparison of one-dimensional turbulence and direct numerical simulations of soot formation and transport in a nonpremixed ethylene jet flame
,”
Proc. Combust. Inst.
35
,
1199
(
2015
).
22.
L. S.
Freire
and
M.
Chamecki
, “
A one-dimensional stochastic model of turbulence within and above plant canopies
,”
Agric. Meteorol.
250–251
,
9
(
2018
).
23.
Rakhi
and
H.
Schmidt
, “
One-dimensional turbulence: Application to incompressible spatially developing turbulent boundary layers
,”
Int. J. Heat Fluid Flow
85
,
108626
(
2020
).
24.
M.
Klein
,
H.
Schmidt
, and
D. O.
Lignell
, “
Stochastic modeling of surface scalar-flux fluctuations in turbulent channel flow using one-dimensional turbulence
,”
Int. J. Heat Fluid Flow
93
,
108889
(
2022
).
25.
S.
Sharma
,
M.
Klein
, and
H.
Schmidt
, “
Features of far-downstream asymptotic velocity fluctuations in a round jet: A one-dimensional turbulence study
,”
Phys. Fluids
34
,
085134
(
2022
).
26.
R. C.
Schmidt
,
A. R.
Kerstein
,
S.
Wunsch
, and
V.
Nilsen
, “
Near-wall LES closure based on one-dimensional turbulence modeling
,”
J. Comput. Phys.
186
,
317
(
2003
).
27.
S.-F.
Cao
and
T.
Echekki
, “
A low-dimensional stochastic closure model for combustion large-eddy simulation
,”
J. Turbul.
9
,
N2
(
2008
).
28.
J.
Park
and
T.
Echekki
, “
LES–ODT study of turbulent premixed interacting flames
,”
Combust. Flame
159
,
609
(
2012
).
29.
R. C.
Schmidt
,
A. R.
Kerstein
, and
R.
McDermott
, “
ODTLES: A multi-scale model for 3D turbulent flow based on one-dimensional turbulence modeling
,”
Comput. Methods Appl. Mech. Eng.
199
,
865
(
2010
).
30.
C.
Glawe
,
J. A.
Medina M
, and
H.
Schmidt
, “
IMEX based multi-scale time advancement in ODTLES
,”
Z. Angew. Math. Mech.
98
,
1907
(
2018
).
31.
T.
Gao
, “
A study of modeling and simulation methods for compressible turbulent flows based on one-dimensional turbulence
,” Ph.D. thesis (
Graduate School of National University of Defense Technology
,
2019
).
32.
C.
Chen
,
J.
Liang
,
T.
Gao
,
X.
Wu
,
W.
Zhao
, and
L.
Zhang
, “
Conservative compressible one-dimensional turbulence formulation and application to high-Reynolds-number compressible turbulent channel flows
,”
Phys. Fluids
34
,
065121
(
2022
).
33.
T.
Gao
,
H.
Schmidt
,
M.
Klein
,
J.
Liang
,
M.
Sun
,
C.
Chen
, and
Q.
Guan
, “
One-dimensional turbulence modeling of compressible flows. II. Full compressible modification and application to shock–turbulence interaction
,”
Phys. Fluids
35
,
035116
(
2023
).
34.
W. T.
Ashurst
and
A. R.
Kerstein
, “
One-dimensional turbulence: Variable-density formulation and application to mixing layers
,”
Phys. Fluids
17
,
025107
(
2005
).
35.
S.
Wunsch
and
A. R.
Kerstein
, “
A model for layer formation in stably stratified turbulence
,”
Phys. Fluids
13
,
702
(
2001
).
36.
D. O.
Lignell
,
A. R.
Kerstein
,
G.
Sun
, and
E. I.
Monson
, “
Mesh adaption for efficient multiscale implementation of one-dimensional turbulence
,”
Theor. Comput. Fluid Dyn.
27
,
273
(
2013
).
37.
C.
Scalo
,
J.
Bodart
, and
S. K.
Lele
, “
Compressible turbulent channel flow with impedance boundary conditions
,”
Phys. Fluids
27
,
035107
(
2015
).
38.
J.
Tang
,
Z.
Zhao
,
Z.
Wan
, and
N.
Liu
, “
On the near-wall structures and statistics of fluctuating pressure in compressible turbulent channel flows
,”
Phys. Fluids
32
,
115121
(
2020
).
39.
X.
Yuan
,
Y.
Fu
,
J.
Chen
,
M.
Yu
, and
P.
Liu
, “
Supersonic turbulent channel flows over spanwise-oriented grooves
,”
Phys. Fluids
34
,
016109
(
2022
).
40.
G. N.
Coleman
,
J.
Kim
, and
R. D.
Moser
, “
A numerical study of turbulent supersonic isothermal-wall channel flow
,”
J. Fluid Mech.
305
,
159
(
1995
).
41.
P. G.
Huang
,
G. N.
Coleman
, and
P.
Bradshaw
, “
Compressible turbulent channel flows: DNS results and modelling
,”
J. Fluid Mech.
305
,
185
(
1995
).
42.
E.
Lenormand
,
P.
Sagaut
, and
L. T.
Phuoc
, “
Large eddy simulation of subsonic and supersonic channel flow at moderate Reynolds number
,”
Int. J. Numer. Methods Fluids
32
,
369
(
2000
).
43.
A. R.
Kerstein
, “
Documentation of BasicODT
,” A Simple ODT Code: Version 1,
2008
.
44.
C.
Brun
,
M.
Petrovan Boiarciuc
,
M.
Haberkorn
, and
P.
Comte
, “
Large eddy simulation of compressible channel flow
,”
Theor. Comput. Fluid Dyn.
22
,
189
(
2008
).
45.
P. G.
Huang
and
G. N.
Coleman
, “
Van Driest transformation and compressible wall-bounded flows
,”
AIAA J.
32
,
2110
(
1994
).
46.
R.
Mathis
,
N.
Hutchins
, and
I.
Marusic
, “
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers
,”
J. Fluid Mech.
628
,
311
(
2009
).
47.
R. D.
Moser
,
J.
Kim
, and
N. N.
Mansour
, “
Direct numerical simulation of turbulent channel flow up to Reτ = 590
,”
Phys. Fluids
11
,
943
(
1999
).
48.
R. D.
Ulerich
, “
Reducing turbulence- and transition-driven uncertainty in aerothermodynamic heating predictions for blunt-bodied reentry vehicles
,” Ph.D. thesis (
University of Texas at Austin
,
2014
).
You do not currently have access to this content.