Recent studies by Fong et al. [“Finite roughness effect on modal growth of a hypersonic boundary layer,” AIAA Paper No. 2012-1086, 2012; “Stabilization of hypersonic boundary layer waves using 2-D surface roughness,” AIAA Paper No. 2013-2985, 2013; “Numerical simulation of roughness effect on the stability of a hypersonic boundary layer,” Comput. Fluids 96, 350–367 (2014); and “Second mode suppression in hypersonic boundary layer by roughness: Design and experiments,” AIAA J. 53, 1–6 (2015)] have shown that finite roughness can attenuate Mack's second mode instability when placed at the discrete mode synchronization location for two-dimensional planar flow over a flat plate. However, more practical hypersonic flows are non-planer conical flows, and the roughness effect phenomenon in conical flows has not been extensively investigated. For that reason, this investigation research the ability of finite roughness strips to attenuate the second mode instability on a Mach 8 straight blunt cone with a freestream unit Reynolds number of 9 585 000. Two roughness configurations are studied: a single roughness strip and an array of six sequential strips. N-factor calculations determine the second mode frequency most likely to lead to turbulent transition, and the linear stability theory is used to determine the mode's synchronization location. In the unsteady simulations of the roughness configurations, a blowing-suction actuator introduces an upstream broadband Gaussian pulse. Fourier decomposition of the pulse's history shows that the single roughness strip attenuates frequencies higher than 208 kHz while lower frequencies are amplified. Likewise, the roughness array exhibits similar results, attenuating frequencies higher than 164 kHz and amplifying lower frequencies downstream. The results show that both configurations can delay second mode instability growth on a hypersonic blunt cone and possibly delay turbulent transition. However, investigations of the roughness effect's behavior downstream of the roughness configurations show that disturbance growth resumes and becomes more destabilizing to the boundary layer.

1.
X.
Zhong
and
X.
Wang
, “
Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers
,”
Annu. Rev. Fluid Mech.
44
,
527
561
(
2012
).
2.
W. H.
Dorrance
,
Viscous Hypersonic Flow: Theory of Reacting and Hypersonic Boundary Layers
(
Dover Publications, Inc
.,
Mineola, NY
,
2017
).
3.
W. S.
Saric
,
H. L.
Reed
, and
E. J.
Kerschen
, “
Boundary-layer receptivity to freestream disturbances
,”
Annu. Rev. Fluid Mech.
34
,
291
319
(
2002
).
4.
M. V.
Morkovin
,
E.
Reshotko
, and
T.
Herbert
, “
Transition in open flow systems—A reassessment
,”
Bull. Am. Phys. Soc.
39
,
1882
(
1994
).
5.
S. P.
Schneider
, “
Effects of roughness on hypersonic boundary-layer transition
,”
J. Spacecr. Rockets
45
,
193
209
(
2008
).
6.
S. P.
Schneider
, “
Summary of hypersonic boundary-layer transition experiments on blunt bodies with roughness
,”
J. Spacecr. Rockets
45
,
1090
1105
(
2008
).
7.
E.
Reshotko
and
A.
Tumin
, “
Role of transient growth in roughness-induced transition
,”
AIAA J.
42
,
766
770
(
2004
).
8.
P.
Paredes
,
M. M.
Choudhari
,
F.
Li
,
J. S.
Jewell
,
R. L.
Kimmel
,
E. C.
Marineau
, and
G.
Grossir
, “
Nose-tip bluntness effects on transition at hypersonic speeds
,”
J. Spacecr. Rockets
56
,
369
387
(
2019
).
9.
L.
Duan
,
X.
Wang
, and
X.
Zhong
, “
A high-order cut-cell method for numerical simulation of hypersonic boundary-layer instability with surface roughness
,”
J. Comput. Phys.
229
,
7207
7237
(
2010
).
10.
K. D.
Fong
,
X.
Wang
, and
X.
Zhong
, “
Numerical simulation of roughness effect on the stability of a hypersonic boundary layer
,”
Comput. Fluids
96
,
350
367
(
2014
).
11.
D.
Fong
,
X.
Wang
, and
X.
Zhong
, “
Finite roughness effect on modal growth of a hypersonic boundary layer
,” AIAA Paper No. 2012-1086,
2012
.
12.
X.
Zhong
,
K. D.
Fong
, and
X.
Wang
, “
Hypersonic laminar flow control
,” Patent No. US 10,071,798 B2 (11 Sept.
2018
).
13.
C. S.
James
, “
Boundary-layer transition on hollow cylinders in supersonic free flight as affected by Mach number and a screwthread type of surface roughness
,”
Report No. NASA-MEMO-1-20-59A
(
1959
), see https://ntrs.nasa.gov/citations/19980228370.
14.
P. F.
Holloway
and
J. R.
Sterrett
, “
Effect of controlled surface roughness on boundary layer transition and heat transfer at Mach numbers of 4.8 and 6.0
,”
Report No. NASA-TN-D-2054
(
1964
).
15.
K.
Fujii
, “
Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition
,”
J. Spacecr. Rockets
43
,
731
738
(
2006
).
16.
B. C.
Chynoweth
,
C. A. C.
Ward
,
R. T.
Greenwood
,
G. R.
McKiernan
,
R. A.
Fisher
, and
S. P.
Schneider
, “
Measuring transition and instabilities in a Mach 6 hypersonic quiet wind tunnel
,” AIAA Paper No. 2014-2643,
2014
.
17.
K. D.
Fong
,
X.
Wang
,
Y.
Huang
,
X.
Zhong
,
G. R.
McKiernan
,
R. A.
Fisher
, and
S. P.
Schneider
, “
Second mode suppression in hypersonic boundary layer by roughness: Design and experiments
,”
AIAA J.
53
,
1
6
(
2015
).
18.
Q.
Tang
,
Y.
Zhu
,
X.
Chen
, and
C.
Lee
, “
Development of second-mode instability in a Mach 6 flat plate boundary layer with two-dimensional roughness
,”
Phys. Fluids
27
,
064105
(
2015
).
19.
C. H.
Mortensen
and
X.
Zhong
, “
Real-gas and surface-ablation effects on hypersonic boundary-layer instability over a blunt cone
,”
AIAA J.
54
,
980
919
(
2016
).
20.
A.
Sescu
,
J.
Sawaya
,
V.
Sassanis
, and
M. R.
Visbal
, “
Study of the effect of two-dimensional wall non-uniformities on high-speed boundary layers
,” AIAA Paper No. 2017-4511,
2017
.
21.
M.
Dong
,
Y.
Liu
, and
X.
Wu
, “
Receptivity of inviscid modes in supersonic boundary layers due to scattering of free-stream sound by localised wall roughness
,”
J. Fluid Mech.
896
,
A23
(
2020
).
22.
M.
Dong
and
L.
Zhao
, “
An asymptotic theory of the roughness impact on inviscid Mack modes in supersonic/hypersonic boundary layers
,”
J. Fluid Mech.
913
,
A22
(
2021
).
23.
D. C.
Berridge
,
C.
Yam
,
G.
McKiernan
,
D. R.
Eby
,
C. L.
Carpenter
, and
J. S.
Jewell
, “
Roughness effects on the crossflow instability on the HIFiRE-5 geometry
,” AIAA Paper No. 2022-1211,
2022
.
24.
L. N.
Wagner
,
S. P.
Schneider
, and
J. S.
Jewell
, “
Streamwise vortices from controlled roughnesses on a cone-cylinder-flare at Mach 6
,” AIAA Paper No. 2022-1671,
2022
.
25.
P.
Paredes
,
M. M.
Choudhari
,
F.
Li
,
J. S.
Jewell
, and
R. L.
Kimmel
, “
Nonmodal growth of traveling waves on blunt cones at hypersonic speeds
,”
AIAA J.
57
,
4738
4749
(
2019
).
26.
P.
Paredes
,
A.
Scholten
,
M. M.
Choudhari
,
F.
Li
,
B. N.
Price
, and
J. S.
Jewell
, “
Combined bluntness and roughness effects on cones at hypersonic speeds
,” AIAA Paper No. 2022-3340,
2022
.
27.
X.
Zhong
, “
High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition
,”
J. Comput. Phys.
144
,
662
709
(
1998
).
28.
K. M.
Casper
,
S. J.
Beresh
,
J. F.
Henfling
,
R. W.
Spillers
,
B. O. M.
Pruett
, and
S. P.
Schneider
, “
Hypersonic wind-tunnel measurements of boundary-layer transition on a slender cone
,”
AIAA J.
54
,
1250
1263
(
2016
).
29.
W.
Sutherland
, “
LII. The viscosity of gases and molecular force
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
36
,
507
531
(
1893
).
30.
Y.
Huang
and
X.
Zhong
, “
Numerical study of hypersonic boundary-layer receptivity with freestream hotspot perturbations
,”
AIAA J.
52
,
1
21
(
2014
).
31.
J.
Lei
and
X.
Zhong
, “
Linear stability analysis of nose bluntness effects on hypersonic boundary layer transition
,”
J. Spacecr. Rockets
49
,
24
37
(
2012
).
32.
J.
Williamson
, “
Low-storage Runge-Kutta schemes
,”
J. Comput. Phys.
35
,
48
56
(
1980
).
33.
K. D.
Fong
,
X.
Wang
, and
X.
Zhong
, “
Parametric study on stabilization of hypersonic boundary layer waves using 2-D surface roughness
,” AIAA Paper No. 2015-0837,
2015
.
34.
L. M.
Mack
, “
Boundary layer linear stability theory
,”
AGARD Technical Report No. 709
(
1984
).
35.
Y.
Ma
and
X.
Zhong
, “
Receptivity of a supersonic boundary layer over a flat plate—Part 1: Wave structures and interactions
,”
J. Fluid Mech.
488
,
31
78
(
2003
).
36.
Y.
Ma
and
X.
Zhong
, “
Receptivity of a supersonic boundary layer over a flat plate—Part 2: Receptivity to free-stream sound
,”
J. Fluid Mech.
488
,
79
121
(
2003
).
37.
M. R.
Malik
, “
Numerical methods for hypersonic boundary layer stability
,”
J. Comput. Phys.
86
,
376
413
(
1990
).
38.
C. P.
Knisely
and
X.
Zhong
, “
Sound radiation by supersonic unstable modes in hypersonic blunt cone boundary layers—I: Linear stability theory
,”
Phys. Fluids
31
,
024103
(
2019
).
39.
C. P.
Knisely
and
X.
Zhong
, “
Sound radiation by supersonic unstable modes in hypersonic blunt cone boundary layers—II: Direct numerical simulation
,”
Phys. Fluids
31
,
024104
(
2019
).
40.
J. L.
van Ingen
, “
A suggested semi-empirical method for the calculation of the boundary layer transition region
,”
Report No. VTH-74
(
Delft University of Technology
,
Delft, The Netherlands
,
1956
).
41.
L. M.
Mack
, “
Transition and laminar instability
,”
Report No. NASA-CP-153203
(
Jet Propulsion Laboratory
,
Pasadena, CA
,
1977
).
42.
K. D.
Fong
,
X.
Wang
, and
X.
Zhong
, “
Stabilization of hypersonic boundary layer waves using 2-D surface roughness
,” AIAA Paper No. 2013-2985,
2013
.
43.
A.
Fedorov
and
A.
Tumin
, “
High-speed boundary-layer instability: Old terminology and a new framework
,”
AIAA J.
49
,
1647
1657
(
2011
).
44.
K. D.
Fong
and
X.
Zhong
, “
DNS and PSE study on the stabilization effect of hypersonic boundary layer waves using 2-D surface roughness
,” AIAA Paper No. 2016-3347,
2016
.
45.
C.
Haley
and
X.
Zhong
, “
Supersonic mode in a low-enthalpy hypersonic flow over a cone and wave packet interference
,”
Phys. Fluids
33
,
054104
(
2021
).
You do not currently have access to this content.