This paper reports a detailed investigation of the interaction between a wall-bounded precessing vortex core (PVC) occurring in swirling flows after vortex breakdown and a wall asymmetry. Experiments are carried out in an axisymmetric diffuser downstream of an axial swirl generator inducing a swirling flow with a swirl number of S = 1.1. Wall pressure measurements and two-component particle image velocimetry (PIV) are conducted for Reynolds numbers (Re) ranging from 20 000 to 76 000 in the initial axisymmetric configuration and several asymmetric configurations, with an additional cylindrical protrusion placed on the diffuser wall at different streamwise and circumferential positions. It is first confirmed that synchronous pressure fluctuations at the PVC frequency are only produced in asymmetric configurations. Furthermore, the analysis of the pressure data in several asymmetric configurations revealed for the first time a resonator-like behavior of a wall-bounded PVC. While a change of the protrusion circumferential position in a given cross section of the diffuser only affects the phase of the synchronous pressure fluctuations, the amplitude of the latter features successive minima (pressure node) and maxima (pressure anti-node) as the protrusion is moved along the diffuser in the streamwise direction. In addition, as the protrusion is moved closer to a pressure node, the phase of the synchronous pressure fluctuations exhibits a sudden variation of ± π. Similar results are observed for all tested values of Reynolds number, whereas the PVC frequency linearly increases with Re. A reconstruction of the PVC helical structure based on PIV measurements showed that these consecutive pressure nodes are spaced by a distance equal to approximately one third of the PVC helical pitch. Finally, it also revealed that two different states are observed, depending on the position of the protrusion along the diffuser: the synchronous pressure component reaches its maximum value as the PVC center is approaching either its closest or farthest angular position with respect to the protrusion. The transition from one state to another one depends on the streamwise position of the protrusion with respect to the pressure nodes. These unprecedented experimental observations pave the way to novel theoretical developments for a better understanding and modeling of synchronous pressure fluctuations induced by wall-bounded PVC in asymmetric geometries.

1.
F.
Gallaire
,
M.
Ruith
,
E.
Meiburg
,
J.-M.
Chomaz
, and
P.
Huerre
, “
Spiral vortex breakdown as a global mode
,”
J. Fluid Mech.
549
,
71
80
(
2006
).
2.
I. V.
Naumov
,
B. R.
Sharifullin
,
M. A.
Tsoy
, and
V. N.
Shtern
, “
Dual vortex breakdown in a two-fluid confined flow
,”
Phys. Fluids
32
,
061706
(
2020
).
3.
O.
Lucca-Negro
and
T.
O'Doherty
, “
Vortex breakdown: A review
,”
Prog. Energy Combust. Sci.
27
,
431
481
(
2001
).
4.
N.
Lambourne
and
D.
Bryer
,
The Bursting of Leading-Edge Vortices—Some Observations and Discussion of the Phenomenon
(
Aeronautical Research Council
,
1962
).
5.
R.
Goyal
,
B. K.
Gandhi
, and
M. J.
Cervantes
, “
Experimental study of mitigation of a spiral vortex breakdown at high Reynolds number under an adverse pressure gradient
,”
Phys. Fluids
29
,
104104
(
2017
).
6.
S.
Pasche
,
F.
Gallaire
, and
F.
Avellan
, “
Predictive control of spiral vortex breakdown
,”
J. Fluid Mech.
842
,
58
86
(
2018
).
7.
I.
Litvinov
,
D.
Sharaborin
, and
S.
Shtork
, “
Reconstructing the structural parameters of a precessing vortex by SPIV and acoustic sensors
,”
Exp. Fluids
60
,
139
(
2019
).
8.
S.
Taamallah
,
Y.
Dagan
,
N.
Chakroun
,
S. J.
Shanbhogue
,
K.
Vogiatzaki
, and
A. F.
Ghoniem
, “
Helical vortex core dynamics and flame interaction in turbulent premixed swirl combustion: A combined experimental and large eddy simulation investigation
,”
Phys. Fluids
31
,
025108
(
2019
).
9.
Y.
Shen
,
M.
Ghulam
,
K.
Zhang
,
E.
Gutmark
, and
C.
Duwig
, “
Vortex breakdown of the swirling flow in a lean direct injection burner
,”
Phys. Fluids
32
,
125118
(
2020
).
10.
T.
Grimble
and
A.
Agarwal
, “
Characterisation of acoustically linked oscillations in cyclone separators
,”
J. Fluid Mech.
780
,
45
59
(
2015
).
11.
A.
Favrel
,
J. G. P.
Junior
,
A.
Müller
,
C.
Landry
,
K.
Yamamoto
, and
F.
Avellan
, “
Swirl number based transposition of flow-induced mechanical stresses from reduced scale to full-size Francis turbine runners
,”
J. Fluids Struct.
94
,
102956
(
2020
).
12.
D.
Valentin
,
A.
Presas
,
C.
Valero
,
E. M.
Egusquiza
,
E.
Egusquiza
,
J.
Gomes
, and
F.
Avellan
, “
Transposition of the mechanical behavior from model to prototype of Francis turbines
,”
Renewable Energy
152
,
1011
1023
(
2020
).
13.
R.
Susan-Resiga
,
S.
Muntean
,
V.
Hasmatuchi
,
I.
Anton
, and
F.
Avellan
, “
Analysis and prevention of vortex breakdown in the simplified discharge cone of a Francis turbine
,”
J. Fluids Eng., Trans. ASME
132
,
0511021
(
2010
).
14.
S.
Pasche
,
F.
Avellan
, and
F.
Gallaire
, “
Part load vortex rope as a global unstable mode
,”
J. Fluids Eng.
139
,
051102
(
2017
).
15.
R.
Goyal
, “
Vortex core formation in a Francis turbine during transient operation from best efficiency point to high load
,”
Phys. Fluids
32
,
074109
(
2020
).
16.
A.
Favrel
,
Z.
Liu
,
M. H.
Khozaei
,
T.
Irie
, and
K.
Miyagawa
, “
Anti-phase oscillations of an elliptical cavitation vortex in Francis turbine draft tube
,”
Phys. Fluids
34
,
064112
(
2022
).
17.
S.
Alekseenko
,
P.
Kuibin
,
S.
Shtork
,
S.
Skripkin
,
V.
Sonin
,
M.
Tsoy
, and
A.
Ustimenko
, “
A novel scenario of aperiodical impacts appearance in the turbine draft tube
,”
IOP Conf. Ser.: Earth Environ. Sci.
49, 082025 (
2016
).
18.
A.
Stuparu
and
R.
Susan-Resiga
, “
The complex dynamics of the precessing vortex rope in a straight diffuser
,”
IOP Conf. Ser.: Earth Environ. Sci.
49
,
082013
(
2016
).
19.
S.
Muntean
,
C.
Tănasă
,
A. I.
Bosioc
, and
D. C.
Moş
, “
Investigation of the plunging pressure pulsation in a swirling flow with precessing vortex rope in a straight diffuser
,”
IOP Conf. Ser.: Earth Environ. Sci.
49
,
082010
(
2016
).
20.
M. H.
Khozaei
,
A.
Favrel
, and
K.
Miyagawa
, “
On the generation mechanisms of low-frequency synchronous pressure pulsations in a simplified draft-tube cone
,”
Int. J. Heat Fluid Flow
93
,
108912
(
2022
).
21.
A.
Favrel
,
J.
Gomes Pereira Junior
,
C.
Landry
,
S.
Alligné
,
L.
Andolfatto
,
C.
Nicolet
, and
F.
Avellan
, “
Prediction of hydro-acoustic resonances in hydropower plants by a new approach based on the concept of swirl number
,”
J. Hydraul. Res.
58
,
87
104
(
2019
).
22.
J.
Gomes Pereira Junior
,
A.
Favrel
,
L.
Andolfatto
,
C.
Landry
,
S.
Alligné
,
C.
Nicolet
, and
F.
Avellan
, “
Procedure for predicting part load resonance in Francis turbines hydropower units based on swirl number and local cavitation coefficient similitude
,”
Mech. Syst. Signal Process.
132
,
84
101
(
2019
).
23.
C.
Landry
,
A.
Favrel
,
A.
Müller
,
C.
Nicolet
, and
F.
Avellan
, “
Local wave speed and bulk flow viscosity in Francis turbines at part load operation
,”
J. Hydraul. Res.
54
,
185
196
(
2016
).
24.
M.
Nishi
,
S.
Matsunaga
,
T.
Kubota
, and
Y.
Senoo
, “
Surging characteristics of conical and elbow-type draft tubes
,” in
Proceedings of the 12th IAHR Symposium on Hydraulic Machinery and System
, Stirling, Scotland,
1984
.
25.
S.
Pasche
,
F.
Gallaire
, and
F.
Avellan
, “
Origin of the synchronous pressure fluctuations in the draft tube of Francis turbines operating at part load conditions
,”
J. Fluids Struct.
86
,
13
33
(
2019
).
26.
M.
Fanelli
, “
Vortex rope in the draft tube of Francis turbines operating at partial load. a proposal for a mathematical model
,”
J. Hydraul. Res.
27
,
769
807
(
1989
).
27.
A.
Favrel
,
Z.
Liu
, and
K.
Miyagawa
, “
Enhancing effect of an open pipe exit on the precessing vortex core occurring in confined swirling flows
,”
Exp. Fluids
61
,
211
(
2020
).
28.
Z.
Liu
,
A.
Favrel
, and
K.
Miyagawa
, “
Effect of the conical diffuser angle on the confined swirling flow induced precessing vortex core
,”
Int. J. Heat Fluid Flow
95
,
108968
(
2022
).
29.
I.
Litvinov
,
S.
Shtork
,
E.
Gorelikov
,
A.
Mitryakov
, and
K.
Hanjalic
, “
Unsteady regimes and pressure pulsations in draft tube of a model hydro turbine in a range of off-design conditions
,”
Exp. Therm. Fluid Sci.
91
,
410
422
(
2018
).
30.
A.
Duparchy
,
J.
Guillozet
,
T.
De Colombel
, and
L.
Bornard
, “
Spatial harmonic decomposition as a tool for unsteady flow phenomena analysis
,”
IOP Conf. Ser.: Earth Environ. Sci.
22
,
032016
(
2014
).
31.
P.
Doerfler
and
N.
Ruchonnet
, “
A statistical method for draft tube pressure pulsation analysis
,”
IOP Conf. Ser.: Earth Environ. Sci.
15
,
062002
(
2012
).
32.
A.
Müller
,
A.
Favrel
,
C.
Landry
, and
F.
Avellan
, “
Fluid-structure interaction mechanisms leading to dangerous power swings in Francis turbines at full load
,”
J. Fluids Struct.
69
,
56
71
(
2017
).
33.
L.
Graftieaux
,
M.
Michard
, and
G.
Nathalie
, “
Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows
,”
Meas. Sci. Technol.
12
,
1422
1429
(
2001
).
34.
A.
Amini
,
M.
Reclari
,
T.
Sano
,
M.
Iino
, and
M.
Farhat
, “
Suppressing tip vortex cavitation by winglets
,”
Exp. Fluids
60
,
159
(
2019
).
35.
S.
Pasche
,
F.
Avellan
, and
F.
Gallaire
, “
Optimal control of part load vortex rope in Francis turbines
,”
J. Fluids Eng.
141
,
081203
(
2019
).
36.
S.
Khullar
,
S.
Kumar
,
K.
Singh
,
M.
Cervantes
, and
B.
Gandhi
, “
Influence of axial water jet size on RVR mitigation in draft tube of Francis turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
1079
,
012027
(
2022
).
37.
Z.
Luo
,
C.
Nie
,
S.
Lv
,
T.
Guo
, and
S.
Gao
, “
The effect of J-groove on vortex suppression and energy dissipation in a draft tube of Francis turbine
,”
Energies
15
,
1707
(
2022
).
38.
U.
Shrestha
and
Y. D.
Choi
, “
Suppression of flow instability in the Francis hydro turbine draft tube by J-groove shape optimization at a partial flow rate
,”
J. Mech. Sci. Technol.
35
,
2523
(
2021
).
39.
M. A.
Shahzer
,
S.-J.
kim
,
Y.
Cho
, and
J.-H.
Kim
, “
Suppression of vortex rope formation and pressure fluctuation using anti-swirl fins in a Francis turbine model at part load condition with cavitation inception point
,”
Phys. Fluids
34
,
097106
(
2022
).
40.
S.
Shiraghaee
,
J.
Sundström
,
M.
Raisee
, and
M. J.
Cervantes
, “
An experimental investigation on the effects of cylindrical rods in a draft tube at part load operation in down-scale turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
1079
,
012007
(
2022
).
41.
H.
Holmström
,
J.
Sundström
, and
M. J.
Cervantes
, “
Vortex rope interaction with radially protruded solid bodies in an axial turbine: A numerical study
,”
IOP Conf. Ser.: Earth Environ. Sci.
1079
,
012055
(
2022
).
You do not currently have access to this content.