Autoignition and detonation development are foundational events in the combustion community and are fundamentally relevant to engine knocking and detonation propulsion. Autoignition-induced reaction front propagation modes have been extensively investigated, addressing the role of thermal and concentration inhomogeneities. In this work, we have further investigated the nonmonotonic response of detonation development to temperature gradients for low-carbon fuels (hydrogen and syngas) and have found additional detonation regimes, which can depict the panorama of reaction front propagation modes. Results show that separate detonation regimes can be observed when hotspot sizes are below some critical thresholds, with the first corresponding to the known “Bradley detonation peninsula” and the second newly identified featuring broader detonation regions. Despite this, distinct combustion characteristics are observed in the demarcation of detonation regimes between hydrogen and syngas fuels. Specifically, the upper branch of the first detonation regimes for hydrogen is sensitive to temperature gradients at various hotspot sizes, while it exhibits similar behaviors in the lower branch of the second one for syngas, which results in narrower detonation regions. Meanwhile, hydrogen possesses a larger critical hotspot size compared to syngas, and the underlying mechanism is ascribed to the chemical reactivity when hotspot autoignition and the difference of energy density between hotspot interior and exterior. Finally, various detonation regimes are summarized in dimensionless detonation diagrams, in which hydrogen and syngas show similar distributions of detonation peninsula. Despite this, those distinctions in the detonation characteristics between hydrogen and syngas can still be manifested quantitatively. The current work can provide useful insights into knocking inhabitation and detonation promotion.

1.
H.
Wei
,
X.
Zhang
,
H.
Zeng
,
R.
Deiterding
,
J.
Pan
, and
L.
Zhou
, “
Mechanism of end-gas autoignition induced by flame-pressure interactions in confined space
,”
Phys. Fluids
31
,
076106
(
2019
).
2.
Y.
Wang
,
C.
Huang
,
R.
Deiterding
,
H.
Chen
, and
Z.
Chen
, “
Numerical studies on detonation propagation in inhomogeneous mixtures with periodic reactant concentration gradient
,”
J. Fluid Mech.
955
,
A23
(
2023
).
3.
J.
Pan
,
G.
Shu
, and
H.
Wei
, “
Interaction of flame propagation and pressure waves during knocking combustion in spark-ignition engines
,”
Combust. Sci. Technol.
186
,
192
209
(
2014
).
4.
Y.
Liu
,
W.
Zhou
,
Y.
Yang
,
Z.
Liu
, and
J.
Wang
, “
Numerical study on the instabilities in H2-air rotating detonation engines
,”
Phys. Fluids
30
,
046106
(
2018
).
5.
Y. B.
Zel'dovich
, “
Regime classification of an exothermic reaction with nonuniform initial conditions
,”
Combust. Flame
39
,
211
214
(
1980
).
6.
I.
Moen
and
J.
Lee
, “
The mechanism of transition from deflagration to detonation in vapor cloud explosion
,”
Prog. Energy Combust. Sci.
6
,
359
389
(
1980
).
7.
A. K.
Kapila
,
D. W.
Schwendeman
,
J. J.
Quirk
, and
T.
Hawa
, “
Mechanisms of detonation formation due to a temperature gradient
,”
Combust. Theor. Model.
6
,
553
594
(
2002
).
8.
X. J.
Gu
,
D. R.
Emerson
, and
D.
Bradley
, “
Modes of reaction front propagation from hot spots
,”
Combust. Flame
133
,
63
74
(
2003
).
9.
D.
Bradley
, “
Autoignitions and detonations in engines and ducts
,”
Philos. Trans. R. Soc. A
370
,
689
714
(
2012
).
10.
M. A.
Liberman
,
A.
Kiverin
, and
M.
Ivanov
, “
Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models
,”
Phys. Rev. E
85
,
056312
(
2012
).
11.
P.
Dai
,
Z.
Chen
,
S.
Chen
, and
Y.
Ju
, “
Numerical experiments on reaction front propagation in n-heptane/air mixture with temperature gradient
,”
Proc. Combust. Inst.
35
,
3045
3052
(
2015
).
12.
P.
Dai
and
Z.
Chen
, “
Effects of NOx addition on autoignition and detonation development in DME/air under engine-relevant conditions
,”
Proc. Combust. Inst.
37
,
4813
4820
(
2019
).
13.
T.
Zhang
,
W.
Sun
, and
Y.
Ju
, “
Multi-scale modeling of detonation formation with concentration and temperature gradients in n-heptane/air mixtures
,”
Proc. Combust. Inst.
36
,
1539
1547
(
2017
).
14.
Y.
Gao
,
P.
Dai
, and
Z.
Chen
, “
Numerical studies on autoignition and detonation development from a hot spot in hydrogen/air mixtures
,”
Combust. Theory Model.
24
,
245
261
(
2020
).
15.
J.
Pan
,
L.
Chen
,
H.
Wei
,
D.
Feng
,
S.
Deng
, and
G.
Shu
, “
On autoignition mode under variable thermodynamic state of internal combustion engines
,”
Int. J. Engine Res.
21
,
856
865
(
2020
).
16.
J.
Pan
,
H.
Wei
,
G.
Shu
,
Z.
Chen
, and
P.
Zhao
, “
The role of low temperature chemistry in combustion mode development under elevated pressures
,”
Combust. Flame
174
,
179
193
(
2016
).
17.
J.
Pan
,
S.
Dong
,
H.
Wei
,
T.
Li
,
G.
Shu
, and
L.
Zhou
, “
Temperature gradient induced detonation development inside and outside a hotspot for different fuels
,”
Combust. Flame
205
,
269
277
(
2019
).
18.
C.
Towery
,
A. Y.
Poludnenko
, and
P. E.
Hamlington
, “
Detonation initiation by compressible turbulence thermodynamic fluctuations
,”
Combust. Flame
213
,
172
183
(
2020
).
19.
A.
Robert
,
S.
Richard
,
O.
Colin
, and
T.
Poinsot
, “
LES study of deflagration to detonation mechanisms in a downsized spark ignition engine
,”
Combust. Flame
162
,
2788
2807
(
2015
).
20.
M. B.
Houidi
,
J.
Sotton
, and
M.
Bellenoue
, “
Interpretation of auto-ignition delays from RCM in the presence of temperature heterogeneities: Impact on combustion regimes and negative temperature coefficient behavior
,”
Fuel
186
,
476
495
(
2016
).
21.
M.
Kuznetsov
,
M.
Liberman
, and
I.
Matsukov
, “
Experimental study of the preheat zone formation and deflagration to detonation transition
,”
Combust. Sci. Technol.
182
,
1628
1644
(
2010
).
22.
J.
Pan
,
G.
Shu
,
P.
Zhao
,
H.
Wei
, and
Z.
Chen
, “
Interactions of flame propagation, auto-ignition and pressure wave during knocking combustion
,”
Combust. Flame
164
,
319
328
(
2016
).
23.
Z.
Yu
,
H.
Zhang
, and
P.
Dai
, “
Autoignition and detonation development induced by temperature gradient in n-C7H16/air/H2O mixtures
,”
Phys. Fluids
33
,
017111
(
2021
).
24.
J.
Pan
,
L.
Wang
,
W.
Liang
,
C. K.
Law
,
H. Q.
Wei
, and
G. Q.
Shu
, “
Multi-regime reaction front and detonation initiation by temperature inhomogeneity
,”
Proc. Combust. Inst.
(published online 2022).
25.
Z.
Chen
,
M. P.
Burke
, and
Y. G.
Ju
, “
Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames
,”
Proc. Combust. Inst.
32
,
1253
1260
(
2009
).
26.
R.
Kee
,
J.
Grcar
,
M.
Smooke
, and
J.
Miller
, “
A Fortran program for modeling a steady laminar one-dimensional premixed flame
,”
Sandia Report No. SAND85-8240
(
Sandia National Laboratories
,
Livermore, CA
,
1987
).
27.
J.
Pan
,
L.
Wang
,
Y.
He
,
H.
Wei
,
G.
Shu
, and
T.
Li
, “
Hotspot auto-ignition induced detonation development: Emphasis on energy density and chemical reactivity
,”
Combust. Theor. Model.
26
,
179
200
(
2022
).
28.
Z.
Chen
, “
On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames
,”
Combust. Flame
158
,
291
300
(
2011
).
29.
J.
Pan
,
H.
Wei
,
G.
Shu
, and
R.
Chen
, “
Effect of pressure wave disturbance on auto-ignition mode transition and knocking intensity under enclosed conditions
,”
Combust. Flame
185
,
63
74
(
2017
).
30.
W.
Han
,
W.
Kong
, and
C. K.
Law
, “
Propagation and failure mechanism of cylindrical detonation in free space
,”
Combust. Flame
192
,
295
313
(
2018
).
31.
C.
Wang
,
C.
Qian
,
J.
Liu
, and
M. A.
Liberman
, “
Influence of chemical kinetics on detonation initiating by temperature gradients in methane/air
,”
Combust. Flame
197
,
400
415
(
2018
).
32.
M. P.
Burke
,
M.
Chaos
,
Y.
Ju
,
F. L.
Dryer
, and
S. J.
Klippenstein
, “
Comprehensive H2/O2 kinetic model for high-pressure combustion
,”
Int. J. Chem. Kinet.
44
,
444
474
(
2012
).
33.
A.
Kéromnès
,
W. K.
Metcalfe
,
K. A.
Heufer
,
N.
Donohoe
,
A. K.
Das
,
C. J.
Sung
 et al, “
An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures
,”
Combust. Flame
160
,
995
1011
(
2013
).
34.
R.
Zhou
and
J. P.
Wang
, “
Numerical investigation of shock wave reflections near the head ends of rotating detonation engines
,”
Combust. Flame
159
,
3632
3645
(
2012
).
35.
D.
Cuppoletti
,
T.
Ombrello
, and
K.
Rein
, “
Energy coupling mechanism for pulse detonation ignition of a scramjet cavity
,”
Proc. Combust. Inst.
37
,
3453
3460
(
2019
).
36.
J.
Rudloff
,
J.
Zaccardi
,
S.
Richard
, and
J.
Anderlohr
, “
Analysis of pre-ignition in highly charged SI engines: Emphasis on the auto-ignition mode
,”
Proc. Combust. Inst.
34
,
2959
2967
(
2013
).

Supplementary Material

You do not currently have access to this content.