For a single-phase flow in a packed bed, systematic radial velocity profiles promote the axial dispersion of a solute identified as trans-column dispersion and quantified by the corresponding dispersion coefficient. In a recent contribution, we evaluated the magnitude of such a dispersive effect for a long enough bed, i.e., the asymptotic behavior. However, in many practical cases, this last condition is not accomplished, and the dispersion coefficient will be lower than the asymptotic value. The development of the trans-column dispersion is addressed based on a two-dimensional two-zone model and the application of the Taylor–Aris method of moments. The results show satisfactory agreement compared with available literature data. The effect of the vessel-to-particle diameter ratio on the development of the trans-column dispersion coefficient is also explored. As the initial growth rate of the dispersion coefficient is lower, the higher the diameter ratio, and the opposite trend holds for the asymptotic value, the net effect of the diameter ratio weakens up to distances of some tens of particle diameter. This result can be identified as one of the reasons for the controversy that still prevails in assessing the contribution of the trans-column dispersion to the total axial dispersion. Further aspects discussed concern suitable approximations to evaluate the development of the trans-column dispersion coefficient and the comparison between the results from the Taylor–Aris method of moments and from the residence time distribution approach.

1.
Abdulmohsin
,
R. S.
and
Al-Dahhan
,
M. H.
, “
Axial dispersion and mixing phenomena of the gas phase in a packed pebble-bed reactor
,”
Ann. Nucl. Energy
88
,
100
111
(
2016
).
2.
Aris
,
R.
, “
On the dispersion of a solute in a fluid flowing through a tube
,”
Proc. R. Soc. A
235
,
67
77
(
1956
).
3.
Aris
,
R.
, “
On the dispersion of a solute by diffusion, convection and exchange between phases
,”
Proc. R. Soc. London, Ser. A
252
,
538
550
(
1959
).
4.
Asensio
,
D. A.
,
Zambon
,
M. T.
,
Mazza
,
G. D.
, and
Barreto
,
G. F.
, “
Heterogeneous two-region model for low-aspect-ratio fixed-bed catalytic reactors. Analysis of fluid-convective contributions
,”
Ind. Eng. Chem. Res.
53
,
3587
3605
(
2014
).
5.
Barton
,
N. G.
, “
On the method of moments for solute dispersion
,”
J. Fluid Mech.
126
,
205
218
(
1983
).
6.
Broeckhoven
,
K.
and
Desmet
,
G.
, “
Considerations for the use of ultra-high pressures in liquid chromatography for 2.1 mm inner diameter columns
,”
J. Chromatogr. A
1523
,
183
192
(
2017
).
7.
de Klerk
,
A.
, “
Voidage variation in packed beds at small column to particle diameter ratio
,”
AIChE J.
49
,
2022
2029
(
2003
).
8.
Delgado
,
J. M. P. Q.
, “
A critical review of dispersion in packed beds
,”
Heat Mass Transfer
42
,
279
310
(
2006
).
9.
Delgado
,
J. M. P. Q.
, “
Longitudinal and transverse dispersion in porous media
,”
Chem. Eng. Res. Des.
85
(
9
),
1245
1252
(
2007
).
10.
Desmet
,
G.
, “
A finite parallel zone model to interpret and extend Giddings' coupling theory for the eddy-dispersion in porous chromatographic media
,”
J. Chromatogr. A
1314
,
124
137
(
2013
).
11.
Desmet
,
G.
and
Broeckhoven
,
K.
, “
Equivalence of the different Cm- and Cs-term expressions used in liquid chromatography and a geometrical model uniting them
,”
Anal. Chem.
80
,
8076
8088
(
2008
).
12.
Dixon
,
A. G.
and
Medeiros
,
N. J.
, “
Computational fluid dynamics simulations of gas-phase radial dispersion in fixed beds with wall effects
,”
Fluids
2
,
56
(
2017
).
13.
Gritti
,
F.
and
Guiochon
,
G.
, “
Perspectives on the evolution of the column efficiency in liquid chromatography
,”
Anal. Chem.
85
,
3017
3035
(
2013
).
14.
Gunn
,
D. J.
, “
Axial and radial dispersion in fixed beds
,”
Chem. Eng. Sci.
42
,
363
373
(
1987
).
15.
Iordanidis
,
A. A.
,
van Sint Annaland
,
M.
,
Kronberg
,
A. E.
, and
Kuipers
,
J. A. M.
, “
A critical comparison between the wave model and the standard dispersion model
,”
Chem. Eng. Sci.
58
,
2785
2795
(
2003
).
16.
Khirevich
,
S.
, “
High-performance computing of flow, diffusion, and hydrodynamic dispersion in random sphere packings
,” Ph.D. thesis (
Philipps-Universität Marburg
,
2011
).
17.
Knox
,
J. C.
,
Ebner
,
A. D.
,
LeVan
,
M. D.
,
Coker
,
R. F.
, and
Ritter
,
J. A.
, “
Limitations of breakthrough curve analysis in fixed-bed adsorption
,”
Ind. Eng. Chem. Res.
55
,
4734
4748
(
2016
).
18.
Kronberg
,
A. E.
, and
Westerterp
,
K. R.
, “
Nonequilibrium effects in fixed-bed interstitial fluid dispersion
,”
Chem. Eng. Sci.
54
,
3977
3993
(
1999
).
19.
Kwapinski
,
W.
, “
Combined wall and thermal effects during non-isothermal packed bed adsorption
,”
Chem. Eng. J.
152
,
271
276
(
2009
).
20.
Kwapinski
,
W.
,
Salem
,
K.
,
Mewes
,
D.
, and
Tsotsas
,
E.
, “
Thermal and flow effects during adsorption in conventional, diluted and annular packed beds
,”
Chem. Eng. Sci.
65
,
4250
4260
(
2010
).
21.
Kwapinski
,
W.
,
Winterberg
,
M.
,
Tsotsas
,
E.
, and
Mewes
,
D.
, “
Modeling of the wall effect in packed bed adsorption
,”
Chem. Eng. Technol.
27
,
1179
1186
(
2004
).
22.
Luzi
,
C. D.
,
Martinez
,
O. M.
, and
Barreto
,
G. F.
, “
Effect of radial velocity profiles on axial dispersion in packed beds: Asymptotic behaviour
,”
Braz. J. Chem. Eng.
38
,
865
885
(
2021
).
23.
Luzi
,
C. D.
,
Mariani
,
N. J.
,
Asensio
,
D. A.
,
Martinez
,
O. M.
, and
Barreto
,
G. F.
, “
Estimation of the radial distribution of axial velocities in fixed beds of spherical packing
,”
Chem. Eng. Res. Des.
150
,
153
168
(
2019
).
24.
Maier
,
R. S.
, “
Enhanced dispersion in cylindrical packed beds
,”
Philos. Trans. R. Soc. London, Ser. A
360
,
497
506
(
2002
).
25.
Maier
,
R. S.
,
Kroll
,
D. M.
,
Bernard
,
R. S.
,
Howington
,
S. E.
,
Peters
,
J. F.
, and
Davis
,
H. T.
, “
Hydrodynamic dispersion in confined packed beds
,”
Phys. Fluids
15
,
3795
3815
(
2003
).
26.
Maier
,
R. S.
,
Schure
,
M. R.
,
Gage
,
J. P.
, and
Seymour
,
J. D.
, “
Sensitivity of pore-scale dispersion to the construction of random bead packs
,”
Water Resour. Res.
44
,
1
12
, (
2008
).
27.
MathWorks
,
MathWorks Optimization ToolboxTM User's Guide, Version 8.2
(
MathWorks
,
2018a
).
28.
MathWorks
,
MathWorks Function Reference User's Guide, Version 9.5
(
MathWorks
,
2018b
).
29.
Moussa
,
A.
,
Deridder
,
S.
,
Broeckhoven
,
K.
, and
Desmet
,
G.
, “
Computational fluid dynamics study of potential solutions to alleviate viscous heating band broadening in 2.1 millimeter liquid chromatography columns
,”
J. Chromatogr. A
1654
,
462452
(
2021
).
30.
Moussa
,
A.
,
Deridder
,
S.
,
Broeckhoven
,
K.
, and
Desmet
,
G.
, “
Detailed computational fluid dynamics study of the parameters contributing to the viscous heating band broadening in liquid chromatography at pressures up to 2500 bar in 2.1 mm columns
,”
J. Chromatogr. A
1661
,
462683
(
2022
).
31.
Rodrigues
,
A. E.
, “
Residence time distribution (RTD) revisited
,”
Chem. Eng. Sci.
230
,
116188
(
2021
).
32.
Sahimi
,
M.
,
Flow and Transport in Porous Media and Fractured Rock
, 2nd. ed. (
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
,
2011
).
33.
Salem
,
K.
,
Kwapinski
,
W.
,
Tsotsas
,
E.
, and
Mewes
,
D.
, “
Experimental and theoretical investigation of concentration and temperature profiles in a narrow packed bed adsorber
,”
Chem. Eng. Technol.
29
,
910
915
(
2006
).
34.
Son
,
K. N.
,
Weibel
,
J. A.
,
Knox
,
J. C.
, and
Garimella
,
S. V.
, “
Limitations of the axially dispersed plug-flow model in predicting breakthrough in confined geometries
,”
Ind. Eng. Chem. Res.
58
,
3853
3866
(
2019
).
35.
Taylor
,
G.
, “
Dispersion of soluble matter in solvent flowing slowly through a tube
,”
Proc. R. Soc. A
219
,
186
203
(
1953
).
36.
Tsotsas
,
E.
and
Schlünder
,
E. U.
, “
On axial dispersion in packed beds with fluid flow
,”
Chem. Eng. Process.
24
,
15
31
(
1988
).
37.
von Seckendorff
,
J.
,
Achterhold
,
K.
,
Franz
,
P.
,
Fischer
,
R.
, and
Hinrichsen
,
O.
, “
Experimental and numerical analysis of void structure in random packed beds of spheres
,”
Powder Technol.
380
,
613
628
(
2021
).
38.
Winterberg
,
M.
,
Tsotsas
,
E.
,
Krischke
,
A.
, and
Vortmeyer
,
D.
, “
A simple and coherent set of coefficients for modelling of heat and mass transport with and without chemical reaction in tubes filled with spheres
,”
Chem. Eng. Sci.
55
,
967
979
(
2000
).
39.
Zambon
,
M. T.
,
Asensio
,
D. A.
,
Barreto
,
G. F.
, and
Mazza
,
G. D.
, “
Application of computational fluid dynamics (CFD) for the evaluation of fluid convective radial heat transfer parameters in packed beds
,”
Ind. Eng. Chem. Res.
53
,
19052
19061
(
2014
).
You do not currently have access to this content.