In the present study, the dry reforming of methane (DRM) has been simulated in fluidized-bed reactors using the multiphase particle-in-cell model. The model was meticulously built to investigate the effect of a wide range of superficial gas velocities covering particulate, aggregative, and lean-phase flow regimes on bed hydrodynamics, conversion, and yields of product gases. Constant values for catalyst loading, CH4:CO2:N2 ratio (1:1:1.3), and catalyst and gas properties were maintained in all simulations. The simulation results obtained are in good agreement with the experimental data reported in the literature. The results show that under different gas velocities, conversion is relatively indiscernible in the particulate regime. In contrast, for the inhomogeneous phases, the turbulent-fluidized bed had the best reactor performance with high CH4 and CO2 conversion rates, good CO + H2 productivity, and high CO/H2 molar ratio. This is due to the vigorous turbulent flow and relatively high gas–solid contact. Due to gas bypassing and backmixing triggered by bubbling, the bubbling-fluidized bed generally had the worst performance and below that of the fast-fluidized bed. The present study demonstrates that the performance of DRM reactions in fluidized-bed reactors is strongly related to the hydrodynamics. Moreover, it shows the significance of gas velocity on DRM conversion, yield, and overall reactor performance.

1.
C.
Hepburn
,
E.
Adlen
,
J.
Beddington
,
E. A.
Carter
,
S.
Fuss
,
N.
Mac Dowell
,
J. C.
Minx
,
P.
Smith
, and
C. K.
Williams
, “
The technological and economic prospects for CO2 utilization and removal
,”
Nat. Biotechnol.
575
,
87
(
2019
).
2.
M.
Abashar
, “
Coupling of steam and dry reforming of methane in catalytic fluidized bed membrane reactors
,”
Int. J. Hydrogen Energy
29
,
799
(
2004
).
3.
Q.
Wang
,
Y.
Cheng
, and
Y.
Jin
, “
Dry reforming of methane in an atmospheric pressure plasma fluidized bed with Ni/γ-Al2O3 catalyst
,”
Catal. Today
148
,
275
(
2009
).
4.
Y.
Benguerba
,
L.
Dehimi
,
M.
Virginie
,
C.
Dumas
, and
B.
Ernst
, “
Modelling of methane dry reforming over Ni/Al2O3 catalyst in a fixed-bed catalytic reactor
,”
React. Kinet., Mech. Catal.
114
,
109
(
2015
).
5.
M.
Kumar
and
V. C.
Srivastava
, “
Simulation of a fluidized‐bed reactor for dimethyl ether synthesis
,”
Chem. Eng. Technol.
33
,
1967
(
2010
).
6.
Q.
Jing
,
H.
Lou
,
L.
Mo
, and
X.
Zheng
, “
Comparative study between fluidized bed and fixed bed reactors in methane reforming with CO2 and O2 to produce syngas
,”
Energy Convers. Manage.
47
,
459
(
2006
).
7.
Z.
Rao
,
Y.
Cao
,
Z.
Huang
,
Z.
Yin
,
W.
Wan
,
M.
Ma
,
Y.
Wu
,
J.
Wang
,
G.
Yang
, and
Y.
Cui
, “
Insights into the nonthermal effects of light in dry reforming of methane to enhance the H2/CO ratio near unity over Ni/Ga2O3
,”
Catal. Commun.
11
,
4730
(
2021
).
8.
Z.
Lyu
,
W.
Shi
, and
M.
Han
, “
Electrochemical characteristics and carbon tolerance of solid oxide fuel cells with direct internal dry reforming of methane
,”
Appl. Energy
228
,
556
(
2018
).
9.
J.
Wei
and
E.
Iglesia
, “
Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts
,”
J. Catal.
224
,
370
(
2004
).
10.
Ş.
Özkara‐Aydınoğlu
, “
Thermodynamic equilibrium analysis of combined carbon dioxide reforming with steam reforming of methane to synthesis gas
,”
Int. J. Hydrogen Energy
35
,
12821
(
2010
).
11.
I. V.
Yentekakis
,
P.
Panagiotopoulou
, and
G.
Artemakis
, “
A review of recent efforts to promote dry reforming of methane (DRM) to syngas production via bimetallic catalyst formulations
,”
Appl. Catal. B: Environ.
296
,
120210
(
2021
).
12.
Y.
Zhang
,
G.
Zhang
,
J.
Liu
,
T.
Li
,
Y.
Wang
,
Y.
Zhao
,
G.
Li
, and
Y.
Zhang
, “
Dry reforming of methane over Ni/SiO2 catalysts: Role of support structure properties
,”
Fuel
340
,
127490
(
2023
).
13.
Q.
Wang
,
H.
Shi
,
B.
Yan
,
Y.
Jin
, and
Y.
Cheng
, “
Steam enhanced carbon dioxide reforming of methane in DBD plasma reactor
,”
Int. J. Hydrogen Energy
36
,
8301
(
2011
).
14.
J. R.
Grace
, “
Fluidized-bed catalytic reactors,” Multiphase Catalytic Reactors: Theory, Design
,
Manufacturing, and Applications
(
Wiley
,
2016
), p.
80
.
15.
L.
Yin
,
S.
Wang
,
H.
Lu
,
J.
Ding
,
R.
Mostofi
, and
Z.
Hao
, “
Simulation of effect of catalyst particle cluster on dry methane reforming in circulating fluidized beds
,”
Chem. Eng. J. Adv.
131
,
123
(
2007
).
16.
T.
Wurzel
,
S.
Malcus
, and
L.
Mleczko
, “
Reaction engineering investigations of CO2 reforming in a fluidized-bed reactor
,”
Chem. Eng. Sci.
55
,
3955
(
2000
).
17.
P.
Ugarte
,
P.
Durán
,
J.
Lasobras
,
J.
Soler
,
M.
Menéndez
, and
J.
Herguido
, “
Dry reforming of biogas in fluidized bed: Process intensification
,”
Int. J. Hydrogen Energy
42
,
13589
(
2017
).
18.
A.
Mahecha-Botero
,
J. R.
Grace
,
C. J.
Lim
,
S.
Elnashaie
,
T.
Boyd
, and
A.
Gulamhusein
, “
Pure hydrogen generation in a fluidized bed membrane reactor: Application of the generalized comprehensive reactor model
,”
Chem. Eng. Sci.
64
,
3826
(
2009
).
19.
D.
Zambrano
,
J.
Soler
,
J.
Herguido
, and
M.
Menéndez
, “
Conventional and improved fluidized bed reactors for dry reforming of methane: Mathematical models
,”
Chem. Eng. J.
393
,
124775
(
2020
).
20.
J.
Wang
, “
Continuum theory for dense gas-solid flow: A state-of-the-art review
,”
Chem. Eng. Sci.
215
,
115428
(
2020
).
21.
G. D.
Wehinger
,
T.
Eppinger
, and
M.
Kraume
, “
Evaluating catalytic fixed-bed reactors for dry reforming of methane with detailed CFD
,”
Chem. Ing. Tech.
87
,
734
(
2015
).
22.
J.
Fu
,
S.
Chen
, and
X.
Zhou
, “
Effect of heterogeneity on interphase heat transfer for gas–solid flow: A particle-resolved direct numerical simulation
,”
Phys. Fluids
34
,
123317
(
2022
).
23.
G. D.
Wehinger
,
M.
Kraume
,
V.
Berg
,
O.
Korup
,
K.
Mette
,
R.
Schlögl
,
M.
Behrens
, and
R.
Horn
, “
Investigating dry reforming of methane with spatial reactor profiles and particle-resolved CFD simulations
,”
AIChE J.
62
,
4436
(
2016
).
24.
S.
Yang
,
Z.
Wan
,
S.
Wang
, and
H.
Wang
, “
Reactive MP-PIC investigation of heat and mass transfer behaviors during the biomass pyrolysis in a fluidized bed reactor
,”
J. Environ. Chem. Eng.
9
(
2
),
105047
(
2021
).
25.
H.
Wang
,
X.
Duan
,
X.
Liu
,
G.
Ye
,
X.
Gu
,
K.
Zhu
,
X.
Zhou
, and
W.
Yuan
, “
Influence of tubular reactor structure and operating conditions on dry reforming of methane
,”
Chem. Eng. Res. Des.
139
,
39
51
(
2018
).
26.
D.
Thiemsakul
,
C.
Kamsuwan
,
R.
Piemjaiswang
,
P.
Piumsomboon
, and
B.
Chalermsinsuwan
, “
Computational fluid dynamics simulation of internally circulating fluidized bed reactor for dry reforming of methane
,”
Energy Rep.
8
,
817
(
2022
).
27.
A. S.
Berrouk
,
A.
Huang
,
S.
Bale
,
P.
Thampi
, and
K.
Nandakumar
, “
Numerical simulation of a commercial FCC regenerator using multiphase particle-in-cell methodology (MP-PIC)
,”
Adv. Powder Technol.
28
,
2947
(
2017
).
28.
A.
Oloruntoba
,
Y.
Zhang
, and
H.
Xiao
, “
Study on effect of gas distributor in fluidized bed reactors by hydrodynamics-reaction-coupled simulations
,”
Chem. Eng. Res. Des.
177
,
431
(
2022
).
29.
A.
Oloruntoba
,
Y.
Zhang
, and
H.
Xiao
, “
Hydrodynamics-reaction-coupled simulations in a low-scale batch FCC regenerator: Comparison between an annular and a free-bubbling fluidized beds
,”
Powder Technol.
407
,
117608
(
2022
).
30.
H.
Xiao
,
Y.
Zhang
, and
J.
Wang
, “
Virtual error quantification of cross-correlation algorithm for solids velocity measurement in different gas fluidization regimes
,”
Chem. Eng. Sci.
246
,
117013
(
2021
).
31.
H.
Xiao
,
Y.
Zhang
, and
J.
Wang
, “
Correlating measurement qualities of cross-correlation based solids velocimetry with solids convection-mixing competing mechanism in different gas fluidization regimes
,”
Chem. Eng. Sci.
253
,
117602
(
2022
).
32.
A. S.
Berrouk
,
C.
Pornsilph
,
S.
Bale
,
Y.
Du
, and
K.
Nandakumar
, “
Simulation of a commercial FCC riser using a combination of MP-PIC and 4-lump oil-cracking kinetic models
,”
Energy Fuels
31
,
4758
4770
(
2017
).
33.
Y.
Du
,
L.
Zhang
, and
A. S.
Berrouk
, “
Exergy analysis of propane dehydrogenation in fluidized bed reactor: Experimental and MP-PIC simulation
,”
Energy Convers. Manage.
202
,
112213
(
2019
).
34.
D.
Snider
, “
An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows
,”
J. Comput. Phys.
170
,
523
(
2001
).
35.
D.
Snider
and
S.
Banerjee
, “
Heterogeneous gas chemistry in the CPFD Eulerian–Lagrangian numerical scheme (ozone decomposition)
,”
Powder Technol.
199
,
100
(
2010
).
36.
S.
Pannala
,
M.
Syamlal
, and
T. J.
O'Brien
,
Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice: Theory, Methods and Practice
(
IGI Global
,
2010
).
37.
P. J.
O'Rourke
and
D. M.
Snider
, “
Inclusion of collisional return-to-isotropy in the MP-PIC method
,”
Chem. Eng. Sci.
80
,
39
(
2012
).
38.
Z.
Yang
,
Y.
Zhang
, and
H.
Zhang
, “
CPFD simulation on effects of louver baffles in a two-dimensional fluidized bed of Geldart A particles
,”
Adv. Powder Technol.
30
,
2712
(
2019
).
39.
A.
Esteghamatian
,
A.
Hammouti
,
M.
Lance
, and
A.
Wachs
, “
Particle resolved simulations of liquid/solid and gas/solid fluidized beds
,”
Phys. Fluids
29
,
033302
(
2017
).
40.
P.
Durán
,
A.
Sanz-Martínez
,
J.
Soler
,
M.
Menéndez
, and
J.
Herguido
, “
Pure hydrogen from biogas: Intensified methane dry reforming in a two-zone fluidized bed reactor using permselective membranes
,”
Chem. Eng. J.
370
,
772
(
2019
).
41.
X.
Yao
,
F.
Sun
,
Y.
Zhang
, and
C.
Lu
, “
Experimental validation of a new heat transfer intensification method for FCC external catalyst coolers
,”
Chem. Eng. Process.
75
,
19
(
2014
).
42.
A. R.
Abrahamsen
and
D.
Geldart
, “
Behaviour of gas-fluidized beds of fine powders. I. Homogeneous expansion
,”
Powder Technol.
26
,
35
(
1980
).
43.
J.
Grace
,
X.
Bi
, and
N.
Ellis
,
Essentials of Fluidization Technology
(
Wiley
,
2020
).
44.
D. R.
Bai
,
Y.
Jin
,
Z. Q.
Yu
, and
J. X.
Zhu
, “
The axial distribution of the cross-sectionally averaged voidage in fast fluidized beds
,”
Powder Technol.
71
(
1
),
51
58
(
1992
).
45.
J. R.
Grace
,
X.
Bi
, and
N.
Ellis
,
Essentials of Fluidization Technology (Wiley-VCH Verlag GmbH and Co
.,
KGaA
,
Weinheim, Germany
,
2020
), Vol.
12
, p.
69469
.
46.
K.
Xi
,
H.
Wang
, and
Y.
Lu
, “
Numerical study on flow dynamics in the supercritical water circulating fluidized bed riser
,”
Phys. Fluids
35
,
023325
(
2023
).
47.
J.
Gan
,
H.
Zhao
,
A. S.
Berrouk
,
Y.
Chaohe
, and
H.
Shan
, “
Impact of the drag law formulation on the predicted binary-particle segregation patterns in a gas-solid fluidized bed
,”
Powder Technol.
218
,
69
75
(
2012
).
48.
J.
Wang
,
M. A.
van der Hoef
, and
J.
Kuipers
, “
Coarse grid simulation of bed expansion characteristics of industrial-scale gas–solid bubbling fluidized beds
,”
Chem. Eng. Sci.
65
,
2125
(
2010
).
49.
T.
Pröll
,
P.
Kolbitsch
,
J.
Bolhàr‐Nordenkampf
, and
H.
Hofbauer
, “
A novel dual circulating fluidized bed system for chemical looping processes
,”
AlChE J.
55
,
3255
(
2009
).
50.
B.
Du
,
L. S.
Fan
,
F.
Wei
, and
W.
Warsito
, “
Gas and solids mixing in a turbulent fluidized bed
,”
AlChE J.
48
,
1896
(
2002
).
51.
A. S.
Berrouk
,
D. E.
Stock
,
D.
Laurence
, and
J. J.
Riley
, “
Heavy particle dispersion from a point source in turbulent pipe flow
,”
Int. J. Multiphase Flow
34
,
916
(
2008
).
You do not currently have access to this content.