The acoustic radiation force has been proven as an effective mechanism for displacing particles and bubbles, but it has been mainly applied in a standing wave mode in microfluidics. Alternatively, the use of pulsed traveling acoustic waves could enable new options, but its transient dynamic, which entails the additional complexities of pulse timing, reflections, and the type of waveform, has not yet been fully investigated. To better understand these transient effects, a transient numerical solution and an experimental testbed were developed to gain insights into the displacement of microbubbles when exposed to on- and off-periods of pulsed traveling waves. In this study, a practical sinusoid tone burst excitation at a driving frequency of 0.5 MHz is investigated. Our numerical and experimental results were found to be in good agreement, with only a 13% deviation in the acoustically driven velocity. With greater detail from the numerical solution at a sampling rate of 1 GHz, the fundamental mechanism for the bubble translation was revealed. It was found that the added mass force, gained through the on-period of the pulse, continued to drive the bubble throughout the off-period, enabling a large total displacement, even in the case of low duty-cycle (2%) pulsing. In addition, the results showed greater translational velocity is possible with a lower number of cycles for the same input acoustic energy (constant duty cycle and acoustic pressure amplitude). Overall, this study proposes a new, practical, and scalable approach for the acoustic manipulation of microbubbles for scientific, biomedical, and industrial applications.

1.
A.
Lenshof
and
T.
Laurell
, “
Emerging clinical applications of microchip-based acoustophoresis
,”
J. Lab. Autom.
16
,
443
(
2011
).
2.
F.
Petersson
,
A.
Lena
,
A.
Swa
, and
T.
Laurell
, “
Free flow acoustophoresis:  Microfluidic-based mode of particle and cell separation
,”
Anal. Chem.
79
,
5117
(
2007
).
3.
E. C.
Unger
,
T. O.
Matsunaga
,
T.
McCreery
,
P.
Schumann
,
R.
Sweitzer
, and
R.
Quigley
, “
Therapeutic applications of microbubbles
,”
Eur. J. Radiol.
42
,
160
(
2002
).
4.
E. C.
Unger
,
T.
Porter
,
W.
Culp
,
R.
Labell
,
T.
Matsunaga
, and
R.
Zutshi
, “
Therapeutic applications of lipid-coated microbubbles
,”
Adv. Drug Deliv. Rev.
56
,
1291
(
2004
).
5.
A.
van Wamel
,
K.
Kooiman
,
M.
Harteveld
,
M.
Emmer
,
F. J.
ten Cate
,
M.
Versluis
, and
N.
de Jong
, “
Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation
,”
J. Controlled Release
112
,
149
(
2006
).
6.
P.
Palanchon
,
B.
Birmelé
, and
F.
Tranquart
, “
Acoustical bubble trapper applied to hemodialysis
,”
Ultrasound Med. Biol.
34
,
681
(
2008
).
7.
K.
Mino
,
M.
Imura
,
D.
Koyama
,
M.
Omori
,
S.
Kawarabata
,
M.
Sato
, and
Y.
Watanabe
, “
Meshless bubble filter using ultrasound for extracorporeal circulation and its effect on blood
,”
Ultrasound Med. Biol.
41
,
465
(
2015
).
8.
B.
Stegmayr
, “
Air contamination during hemodialysis should be minimized
,”
Hemodial. Int.
21
,
168
(
2017
).
9.
B.
Stegmayr
,
U.
Forsberg
,
P.
Jonsson
, and
C.
Stegmayr
, “
The sensor in the venous chamber does not prevent the passage of air bubbles during hemodialysis
,”
Artif. Organs
31
,
162
(
2007
).
10.
A. A.
Doinikov
, “
Acoustic radiation forces: Classical theory and recent advances
,” in
Recent Research Developments in Acoustics
(
Transworld Research Network
,
2003
), Vol.
37661
, p.
39
.
11.
P. A.
Dayton
,
K. E.
Morgan
,
A. L.
Klibanov
,
G.
Brandenburger
,
K. R.
Nightingale
, and
K. W.
Ferrara
, “
A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
1264
(
1997
).
12.
D.
Dalecki
, “
Mechanical bioeffects of ultrasound
,”
Annu. Rev. Biomed. Eng.
6
,
229
(
2004
).
13.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic Press
,
1994
).
14.
J.
Wu
and
G.
Du
, “
Acoustic radiation force on a small compressible sphere in a focused beam
,”
J. Acoust. Soc. Am.
87
,
997
(
1990
).
15.
R.
Löfstedt
and
S.
Putterman
, “
Theory of long-wavelength acoustic radiation pressure
,”
J. Acoust. Soc. Am.
90
,
2027
(
1991
).
16.
C. P.
Lee
and
T. G.
Wang
, “
Acoustic radiation force on a bubble
,”
J. Acoust. Soc. Am.
93
,
1637
(
1993
).
17.
Y.
Qiao
,
M.
Gong
,
H.
Wang
,
J.
Lan
,
T.
Liu
,
J.
Liu
,
Y.
Mao
,
A.
He
, and
X.
Liu
, “
Acoustic radiation force on a free elastic sphere in a viscous fluid: Theory and experiments
,”
Phys. Fluids
33
,
047107
(
2021
).
18.
L. A.
Crum
, “Bjerknes forces on bubbles in a stationary sound field,”
J. Acoust. Soc. Am.
57
,
1363
(
1975
).
19.
P.
Palanchon
,
P.
Tortoli
,
A.
Bouakaz
,
M.
Versluis
, and
N. D.
Jong
, “Optical observations of acoustical radiation force effects on individual air bubbles,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
104
(
2005
).
20.
P. A.
Dayton
,
J. S.
Allen
, and
K. W.
Ferrara
, “
The magnitude of radiation force on ultrasound contrast agents
,”
J. Acoust. Soc. Am.
112
,
2183
(
2002
).
21.
H. J.
Vos
,
F.
Guidi
,
E.
Boni
, and
P.
Tortoli
, “Acoustical investigation of freely moving single microbubbles,”
Proc. IEEE Ultrason. Symp.
2
,
755
(
2005
).
22.
H. J.
Vos
,
F.
Guidi
,
E.
Boni
, and
P.
Tortoli
, “
Method for microbubble characterization using primary radiation force
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
54
,
1333
(
2007
).
23.
C. N.
Acconcia
,
A.
Wright
, and
D. E.
Goertz
, “
Translational dynamics of individual microbubbles with millisecond scale ultrasound pulses
,”
J. Acoust. Soc. Am.
144
,
2859
(
2018
).
24.
F.
Guidi
,
O.
Supponen
,
A.
Upadhyay
,
H. J.
Vos
,
M. A.
Borden
, and
P.
Tortoli
, “
Microbubble Radiation Force-Induced Translation in Plane-Wave Versus Focused Transmission Modes
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
66
,
1856
(
2019
).
25.
Q.
Wang
,
A.
Riaud
,
J.
Zhou
,
Z.
Gong
, and
M.
Baudoin
, “
Acoustic radiation force on small spheres due to transient acoustic fields
,”
Phys. Rev. Appl.
15
,
044034
(
2021
).
26.
L. P.
Gor'kov
, “
On the forces acting on a small particle in an acoustical field in an ideal fluid
,”
Sov. Phys. Dokl.
6
,
773
(
1962
).
27.
F. R.
Gilmore
, “The growth or collapse of a spherical bubble in a viscous compressible liquid,”
Calif. Inst. Tech Eng. Rep.
26
,
1
(
1952
).
28.
J.-P.
Franc
and
J.-M.
Michel
,
Fundamentals of Cavitation
(
Springer
,
Dordrecht
,
2005
).
29.
L. A.
Crum
and
A. I.
Eller
, “
Motion of bubbles in a stationary sound field
,”
J. Acoust. Soc. Am.
48
,
181
(
1970
).
30.
V. N.
Alekseev
, “
Force produced by the acoustic radiation pressure on a sphere
,”
Sov. Phys. Acoust.
29
,
77
(
1983
).
31.
J. B.
Joshi
,
K.
Nandakumar
,
A. W.
Patwardhan
,
A. K.
Nayak
,
V.
Pareek
,
M.
Gumulya
,
C.
Wu
,
N.
Minocha
,
E.
Pal
,
M.
Kumar
,
V.
Bhusare
,
S.
Tiwari
,
D.
Lote
,
C.
Mali
,
A.
Kulkarni
, and
S.
Tamhankar
, “
Computational fluid dynamics
,” in
Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment
(
Elsevier
,
2019
), pp.
21
238
.
32.
V. E.
Johnson
and
T.
Hsieh
, “The influence of the trajectories of gas nuclei on cavitation inception,”
Sixth Nav. Hydrodyn. Symp.
6
,
163
(
1966
).
33.
R. S.
Meyer
,
M. L.
Biller
, and
J. W.
Holl
, “Freestream nuclei and traveling-bubble cavitation,”
Trans. ASME
114
,
672
(
1992
).
34.
C. D.
Ohl
,
A.
Tijink
, and
A.
Prosperetti
, “
The added mass of an expanding bubble
,”
J. Fluid Mech.
482
,
271
(
2003
).
35.
J.
Magnaudet
and
D.
Legendre
, “
The viscous drag force on a spherical bubble with a time-dependent radius
,”
Phys. Fluids
10
,
550
(
1998
).
36.
A. J.
Reddy
and
A. J.
Szeri
, “
Coupled dynamics of translation and collapse of acoustically driven microbubbles
,”
J. Acoust. Soc. Am.
112
,
1346
(
2002
).
37.
Y. C.
Kim
,
B.
Van Dang
,
R.
Taylor
, and
T.
Barber
, “
Controlled generation of single microbubbles
,”
Exp. Fluids
62
,
220
(
2021
).
38.
I.
Leibacher
,
S.
Schatzer
, and
J.
Dual
, “
Impedance matched channel walls in acoustofluidic systems
,”
Lab Chip
14
,
463
(
2014
).
39.
A.
Cafarelli
,
A.
Verbeni
,
A.
Poliziani
,
P.
Dario
,
A.
Menciassi
, and
L.
Ricotti
, “
Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures
,”
Acta Biomater.
49
,
368
(
2017
).
40.
J.
Canny
, “
A computational approach to edge detection
,”
IEEE Trans. Pattern Anal. Mach. Intell.
8
,
679
(
1986
).
41.
Y.
Wang
,
J.
Tyrer
,
P.
Zhihong
, and
W.
Shiquan
, “
Measurement of focused ultrasonic fields using a scanning laser vibrometer
,”
J. Acoust. Soc. Am
121
,
2621
(
2007
).
42.
L.
Hoff
,
P. C.
Sontum
, and
J. M.
Hovem
, “
Oscillations of polymeric microbubbles: Effect of the encapsulating shell
,”
J. Acoust. Soc. Am.
107
,
2272
(
2000
).
43.
K. E.
Morgan
,
J. S.
Allen
,
P. A.
Dayton
,
J. E.
Chomas
,
A. L.
Klibanov
, and
K. W.
Ferrara
, “Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
1494
(
2000
).
44.
O.
Supponen
,
A.
Upadhyay
,
J.
Lum
,
F.
Guidi
,
T.
Murray
,
H. J.
Vos
,
P.
Tortoli
, and
M.
Borden
, “
The effect of size range on ultrasound-induced translations in microbubble populations
,”
J. Acoust. Soc. Am.
147
,
3236
(
2020
).
45.
A. J.
Sojahrood
,
H.
Haghi
,
T. M.
Porter
,
R.
Karshafian
, and
M. C.
Kolios
, “
Experimental and numerical evidence of intensified non-linearity at the microscale: The lipid coated acoustic bubble
,”
Phys. Fluids
33
,
072006
(
2021
).
46.
T.
Kanagawa
,
M.
Honda
, and
Y.
Kikuchi
, “Nonlinear acoustic theory on flowing liquid containing multiple microbubbles coated by a compressible visco-elastic shell: Low and high frequency cases,”
Phys. Fluids
35
,
023303
(
2023
).
47.
Y.
Wang
,
P.
Theobald
,
J.
Tyrer
, and
P.
Lepper
, “
The application of scanning vibrometer in mapping ultrasound fields
,”
J. Phys. Conf. Ser.
1
,
167
(
2004
).
You do not currently have access to this content.