Particle density segregations in vibrated fluidized beds depending on gas inflow velocity under the same vertical vibration condition are studied. Coarse-graining discrete element method and computational fluid dynamics numerical simulations are employed to capture the behaviors of reverse segregation in which heavy particles are located above light particles at zero gas inflow velocity or at velocities considerably lower than the minimum fluidization velocity of light particles. Furthermore, upon increasing the gas inflow velocity slightly, the forward segregation occurs, such that heavy particles are located below light particles. The mechanisms are also elucidated using the simulation results. Because of the relative motions between the particles and bed caused by vertical vibration, negative gauge pressure is observed to be dependent on the vibration phase. In the reverse segregation case, the accumulative effect of the downward gas pressure gradient force induced by vibration overcomes the upward force of the forced air flow. The wall friction transports both the heavy and light particles in the vicinity of the sidewall to the bed bottom, where the local void fraction is comparatively high and reverse segregation mainly occurs. Reverse segregation results from the combined effects of the downward gas pressure gradient force, particle transport, and local formation of the high void region. The increase in gas inflow velocity enhances the upward pressure gradient force, resulting in forward segregation.

1.
L.
Sun
,
F.
Zhao
,
Q.
Zhang
,
D.
Li
, and
H.
Lu
, “
Numerical simulation of particle segregation in vibration fluidized beds
,”
Chem. Eng. Technol.
37
,
2109
2115
(
2014
).
2.
S. M.
Tasirin
and
N.
Anuar
, “
Fluidization behavior of vibrated and aerated beds of starch powders
,”
J. Chem. Eng. Jpn.
34
,
1251
1258
(
2001
).
3.
E.
Marring
,
A. C.
Hoffmann
, and
L.
Janssen
, “
The effect of vibration on the fluidization behaviour of some cohesive powders
,”
Powder Technol.
79
,
1
10
(
1994
).
4.
Y.
Mawatari
,
M.
Tsunekawa
,
Y.
Tatemoto
, and
K.
Noda
, “
Favorable vibrated fluidization conditions for cohesive fine particles
,”
Powder Technol.
154
,
54
60
(
2005
).
5.
C.
Xu
and
J.
Zhu
, “
Parametric study of fine particle fluidization under mechanical vibration
,”
Powder Technol.
161
,
135
144
(
2006
).
6.
J. M.
Valverde
and
A.
Castellanos
, “
Effect of vibration on agglomerate particulate fluidization
,”
AIChE J.
52
,
1705
1714
(
2006
).
7.
D.
Barletta
and
M.
Poletto
, “
Aggregation phenomena in fluidization of cohesive powders assisted by mechanical vibrations
,”
Powder Technol.
225
,
93
100
(
2012
).
8.
Y.
Mawatari
,
Y.
Hamada
,
M.
Yamamura
, and
H.
Kage
, “
Flow pattern transition of fine cohesive powders in a gas-solid fluidized bed under mechanical vibrating conditions
,”
Proc. Eng.
102
,
945
951
(
2015
).
9.
M. P.
Ciamarra
,
M. D.
De Vizia
,
A.
Fierro
,
M.
Tarzia
,
A.
Coniglio
, and
M.
Nicodemi
, “
Granular species segregation under vertical tapping: Effects of size, density, friction, and shaking amplitude
,”
Phys. Rev. Lett.
96
,
058001
(
2006
).
10.
N.
Yamada
,
H.
Hirosue
, and
E.
Abe
, “
The removal of unburned carbon from fly-ash by a fluidized bed with tapping
,”
J. Soc. Powder Technol. Jpn.
25
,
732
738
(
1988
).
11.
Q.
Shi
,
G.
Sun
,
M.
Hou
, and
K.
Lu
, “
Density-driven segregation in vertically vibrated binary granular mixtures
,”
Phys. Rev. E.
75
,
061302
(
2007
).
12.
C.
Zeilstra
,
M. A.
Van der Hoef
, and
J. A. M.
Kuipers
, “
Simulation study of air-induced segregation of equal-sized bronze and glass particles
,”
Phys. Rev. E.
74
,
010302
(
2006
).
13.
N.
Burtally
,
P. J.
King
,
M. R.
Swift
, and
M.
Leaper
, “
Dynamical behaviour of fine granular glass/bronze mixtures under vertical vibration
,”
Granular Matter
5
,
57
66
(
2003
).
14.
E. W. C.
Lim
, “
Density segregation in vibrated granular beds with bumpy surfaces
,”
AIChE J.
56
,
2588
2597
(
2010
).
15.
A.
Di Renzo
,
F. P.
Di Maio
,
R.
Girimonte
, and
B.
Formisani
, “
DEM simulation of the mixing equilibrium in fluidized beds of two solids differing in density
,”
Powder Technol.
184
,
214
223
(
2008
).
16.
C. H.
Tai
,
S. S.
Hsiau
, and
C. A.
Kruelle
, “
Density segregation in a vertically vibrated granular bed
,”
Powder Technol.
204
,
255
262
(
2010
).
17.
Z.
Chao
,
Y.
Wang
,
J. P.
Jakobsen
,
M.
Fernandino
, and
H. A.
Jakobsen
, “
A binary kinetic theory of granular flow model for fluidized beds
,” in
Proceedings of the Seventh International Conference on Multiphase Flow, Tampa, Florida
(
2010
).
18.
Z.
Chao
,
Y.
Wang
,
J. P.
Jakobsen
,
M.
Fernandino
, and
H. A.
Jakobsen
, “
Derivation and validation of a binary multi-fluid Eulerian model for fluidized beds
,”
Chem. Eng. Sci.
66
,
3605
3616
(
2011
).
19.
A.
Chen
,
J. R.
Grace
,
N.
Epstein
, and
C. J.
Lim
, “
Steady state dispersion of mono-size, binary and multi-size particles in a liquid fluidized bed classifier
,”
Chem. Eng. Sci.
57
,
991
1002
(
2002
).
20.
S.
Chiba
,
T.
Chiba
,
A. W.
Nienow
, and
H.
Kobayashi
, “
The minimum fluidisation velocity, bed expansion and pressure-drop profile of binary particle mixtures
,”
Powder Technol.
22
,
255
269
(
1979
).
21.
R.
Fan
and
R. O.
Fox
, “
Segregation in polydisperse fluidized beds: Validation of a multi-fluid model
,”
Chem. Eng. Sci.
63
,
272
285
(
2008
).
22.
B.
Formisani
,
G.
De Cristofaro
, and
R.
Girimonte
, “
A fundamental approach to the phenomenology of fluidization of size segregating binary mixtures of solids
,”
Chem. Eng. Sci.
56
,
109
119
(
2001
).
23.
Y. Q.
Feng
,
B. H.
Xu
,
S. J.
Zhang
, and
A. B.
Yu
, “
Discrete particle simulation of gas fluidization of particle mixtures
,”
AIChE J.
50
,
1713
1728
(
2004
).
24.
Y. Q.
Feng
and
A. B.
Yu
, “
Microdynamic modelling and analysis of the mixing and segregation of binary mixtures of particles in gas fluidization
,”
Chem. Eng. Sci.
62
,
256
268
(
2007
).
25.
P.
Biswas
,
P.
Sanchez
,
M. R.
Swift
, and
P. J.
King
, “
Numerical simulations of air-driven granular separation
,”
Phys. Rev. E.
68
,
050301
(
2003
).
26.
J.
Gao
,
J.
Chang
,
C.
Lu
, and
C.
Xu
, “
Experimental and computational studies on flow behavior of gas–solid fluidized bed with disparately sized binary particles
,”
Particuology
6
,
59
71
(
2008
).
27.
D.
Gera
,
M.
Syamlal
, and
T. J.
O'Brien
, “
Hydrodynamics of particle segregation in fluidized beds
,”
Int. J. Multiphase Flow
30
,
419
428
(
2004
).
28.
M. J. V.
Goldschmidt
,
J. M.
Link
,
S.
Mellema
, and
J. A. M.
Kuipers
, “
Digital image analysis measurements of bed expansion and segregation dynamics in dense gas fluidised beds
,”
Powder Technol.
138
,
135
159
(
2003
).
29.
A. C.
Hoffmann
and
E. J.
Romp
, “
Segregation in a fluidised powder of a continuous size distribution
,”
Powder Technol.
66
,
119
126
(
1991
).
30.
H.
Lu
,
Y.
Zhao
,
J.
Ding
,
D.
Gidaspow
, and
W.
Li
, “
Investigation of mixing/segregation of mixture particles in gas–solid fluidized beds
,”
Chem. Eng. Sci.
62
,
301
317
(
2007
).
31.
V.
Mathiesen
,
T.
Solberg
, and
B. H.
Hjertager
, “
An experimental and computational study of multiphase flow behavior in a circulating fluidized bed
,”
Int. J. Multiphase Flow
26
,
387
419
(
2000
).
32.
A.
Marzocchella
,
P.
Salatino
,
V.
Di Pastena
, and
L.
Lirer
, “
Transient fluidization and segregation by size difference of binary mixtures of particles
,”
AIChE J.
46
,
2175
2182
(
2000
).
33.
R. W.
Rice
and
J. F.
Brainovich
, “
Mixing/segregation in two and three dimensional fluidized beds: Binary systems of equidensity spherical particles
,”
AIChE J.
32
,
7
16
(
1986
).
34.
S. Y.
Wu
and
J.
Baeyens
, “
Segregation by size difference in gas fluidized beds
,”
Powder Technol.
98
,
139
150
(
1998
).
35.
D. C.
Hong
,
P. V.
Quinn
, and
S.
Luding
, “
Reverse Brazil nut problem: Competition between percolation and condensation
,”
Phys. Rev. Lett.
86
,
3423
3426
(
2001
).
36.
M. E.
Möbius
,
B. E.
Lauderdale
,
S. R.
Nagel
, and
H. M.
Jaeger
, “
Brazil-nut effect: Size separation of granular particles
,”
Nature
414
,
270
(
2001
).
37.
M.
Schröter
,
S.
Ulrich
,
J.
Kreft
,
J. B.
Swift
, and
H. L.
Swinney
, “
Mechanisms in the size segregation of a binary granular mixture
,”
Phys. Rev. E.
74
,
011307
(
2006
).
38.
B.
Formisani
,
R.
Girimonte
, and
T.
Longo
, “
The fluidization pattern of density segregating binary mixtures
,”
Chem. Eng. Res. Des.
86
,
344
348
(
2008
).
39.
H. T.
Jang
,
T. S.
Park
, and
W. S.
Char
, “
Mixing-segregation phenomena of binary system in a fluidized bed
,”
J. Ind. Eng. Chem.
16
,
390
394
(
2010
).
40.
F.
García-Ochoa
,
A.
Romero
,
J. C.
Villar
, and
A.
Bello
, “
A study of segregation in a gas–solid fluidized bed: Particles of different density
,”
Powder Technol.
58
,
169
174
(
1989
).
41.
G.
Olivieri
,
A.
Marzocchella
, and
P.
Salatino
, “
Segregation of fluidized binary mixtures of granular solids
,”
AIChE J.
50
,
3095
3106
(
2004
).
42.
Q.
Sun
,
H.
Lu
,
W.
Liu
,
Y.
He
,
L.
Yang
, and
D.
Gidaspow
, “
Simulation and experiment of segregating/mixing of rice husk-sand mixture in a bubbling fluidized bed
,”
Fuel
84
,
1739
1748
(
2005
).
43.
H.
Zhou
,
G.
Flamant
,
D.
Gauthier
, and
J.
Lu
, “
Lagrangian approach for simulating the gas-particle flow structure in a circulating fluidized bed riser
,”
Int. J. Multiphase Flow
28
,
1801
1821
(
2002
).
44.
M.
Rhodes
,
S.
Takeuchi
,
K.
Liffman
, and
K.
Muniandy
, “
The role of interstitial gas in the Brazil Nut effect
,”
Granular Matter
5
,
107
114
(
2003
).
45.
J.
Oshitani
,
M.
Hino
,
S.
Oshiro
,
Y.
Mawatari
,
T.
Tsuji
,
Z.
Jiang
, and
G. V.
Franks
, “
Conversion air velocity at which reverse density segregation coverts to normal density segregation in a vibrated fluidized bed of binary particulate mixtures
,”
Adv. Powder Technol.
33
,
103583
(
2022
).
46.
S.
Cooper
and
C. J.
Coronella
, “
CFD simulations of particle mixing in a binary fluidized bed
,”
Powder Technol.
151
,
27
36
(
2005
).
47.
B. G. M.
Van Wachem
,
J. C.
Schouten
,
C. M.
Van den Bleek
,
R.
Krishna
, and
J. L.
Sinclair
, “
CFD modeling of gas‐fluidized beds with a bimodal particle mixture
,”
AIChE J.
47
,
1292
1302
(
2001
).
48.
P. N.
Rowe
and
A. W.
Nienow
, “
Particle mixing and segregation in gas fluidized beds: A review
,”
Powder Technol.
15
,
141
147
(
1976
).
49.
W. C.
Yang
and
D. L.
Kealrns
, “
Rate of particle separation in a gas fluidized bed
,”
Ind. Eng. Chem. Fundam.
21
,
228
235
(
1982
).
50.
A. C.
Hoffmann
,
L.
Janssen
, and
J.
Prins
, “
Particle segregation in fluidized binary mixture
,”
Chem. Eng. Sci.
48
,
1583
1592
(
1993
).
51.
G. A.
Bokkers
,
M.
van Sint Annaland
, and
J. A. M.
Kuipers
, “
Mixing and segregation in a bidisperse gas–solid fluidised bed: A numerical and experimental study
,”
Powder Technol.
140
,
176
186
(
2004
).
52.
K. P.
Galvin
,
R.
Swann
, and
W. F.
Ramirez
, “
Segregation and dispersion of a binary system of particles in a fluidized bed
,”
AIChE J.
52
,
3401
(
2006
).
53.
G. G.
Joseph
,
J.
Leboreiro
,
C. M.
Hrenya
, and
A. R.
Stevens
, “
Experimental segregation profiles in bubbling gas-fluidized beds
,”
AIChE J.
53
,
2804
2813
(
2007
).
54.
A.
Vaidheeswaran
,
C.
Li
,
H.
Ashfaq
, and
X.
Wu
, “
Validation experiments on bubbling fluidization of group B glass particles
,”
Exp. Comput. Multiphase Flow
4
,
264
273
(
2022
).
55.
A.
Rao
,
J. S.
Curtis
,
B. C.
Hancock
, and
C.
Wassgren
, “
Classifying the fluidization and segregation behavior of binary mixtures using particle size and density ratios
,”
AIChE J.
57
,
1446
1458
(
2011
).
56.
Y.
Zhang
,
W.
Zhong
,
B.
Jin
, and
R.
Xiao
, “
Mixing and segregation behavior in a spoutfluid bed: Effect of the particle density
,”
Ind. Eng. Chem. Res.
52
,
5489
5497
(
2013
).
57.
J.
Oshitani
,
M.
Ohnishi
,
M.
Yoshida
,
G. V.
Franks
,
Y.
Kubo
, and
S.
Nakatsukasa
, “
Dry separation of particulate iron ore using density-segregation in a gas-solid fluidized bed
,”
Adv. Powder Technol.
24
,
554
559
(
2013
).
58.
Q.
Wang
,
W.
Yin
,
B.
Zhao
,
H.
Yang
,
J.
Lu
, and
L.
Wei
, “
The segregation behaviors of fine coal particles in a coal beneficiation fluidized bed
,”
Fuel Process. Technol.
124
,
28
34
(
2014
).
59.
S. L. L.
Seah
and
E. W. C.
Lim
, “
Density segregation of dry and wet granular mixtures in gas fluidized beds
,”
AIChE J.
61
,
4069
4086
(
2015
).
60.
J.
Oshitani
,
K.
Teramoto
,
M.
Yoshida
,
Y.
Kubo
,
S.
Nakatsukasa
, and
G. V.
Franks
, “
Dry beneficiation of fine coal using density-segregation in a gas-solid fluidized bed
,”
Adv. Powder Technol.
27
,
1689
1693
(
2016
).
61.
J.
Huang
,
Y.
Lu
, and
H.
Wang
, “
A new quantitative measurement method for mixing and segregation of binary-mixture fluidized bed by capacitance probe
,”
Chem. Eng. J.
326
,
99
108
(
2017
).
62.
J.
He
,
C.
Liu
,
J.
Xie
,
P.
Hong
, and
Y.
Yao
, “
Beneficiation of coarse particulate iron ore by using a dry density-based fluidized bed separator
,”
Powder Technol.
319
,
346
355
(
2017
).
63.
R.
Girimonte
,
B.
Formisani
, and
V.
Vivacqua
, “
The relationship between fluidization velocity and segregation in two-component gas fluidized beds: Density- or size-segregating mixtures
,”
Chem. Eng. J.
335
,
63
73
(
2018
).
64.
J.
Oshitani
,
S.
Hayashi
, and
D. Y. C.
Chan
, “
Order from Chaos: Dynamics of density segregation in continuously aerated granular systems
,”
Adv. Powder Technol.
31
,
843
847
(
2020
).
65.
Y.
Tsuji
,
T.
Kawaguchi
, and
T.
Tanaka
, “
Discrete particle simulation of two-dimensional fluidized bed
,”
Powder Technol.
77
,
79
87
(
1993
).
66.
Y.
Tsuji
,
T.
Tanaka
, and
T.
Ishida
, “
Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe
,”
Powder Technol.
71
,
239
250
(
1992
).
67.
T.
Kobayashi
,
T.
Tanaka
,
N.
Shimada
, and
T.
Kawaguchi
, “
DEM–CFD analysis of fluidization behavior of Geldart Group A particles using a dynamic adhesion force model
,”
Powder Technol.
248
,
143
152
(
2013
).
68.
Y.
Tatemoto
,
Y.
Mawatari
,
T.
Yasukawa
, and
K.
Noda
, “
Numerical simulation of particle motion in vibrated fluidized bed
,”
Chem. Eng. Sci.
59
,
437
447
(
2004
).
69.
Y.
Tatemoto
,
Y.
Mawatari
, and
K.
Noda
, “
Numerical simulation of cohesive particle motion in vibrated fluidized bed
,”
Chem. Eng. Sci.
60
,
5010
5021
(
2005
).
70.
A.
Acosta-Iborra
,
F.
Hernández-Jiménez
,
M.
de Vega
, and
J. V.
Briongos
, “
A novel methodology for simulating vibrated fluidized beds using two-fluid models
,”
Chem. Eng. J.
198
,
261
274
(
2012
).
71.
K.
Chu
,
J.
Chen
, and
A.
Yu
, “
Applicability of a coarse-grained CFD–DEM model on dense medium cyclone
,”
Miner. Eng.
90
,
43
54
(
2016
).
72.
L.
Lu
,
A.
Morris
,
T.
Li
, and
S.
Benyahia
, “
Extension of a coarse grained particle method to simulate heat transfer in fluidized beds
,”
Int. J. Heat Mass Transfer
111
,
723
735
(
2017
).
73.
L.
Lu
,
A.
Konan
, and
S.
Benyahia
, “
Influence of grid resolution, parcel size and drag models on bubbling fluidized bed simulation
,”
Chem. Eng. J.
326
,
627
639
(
2017
).
74.
C.
Hu
,
K.
Luo
,
S.
Wang
,
L.
Sun
, and
J.
Fan
, “
Influences of operating parameters on the fluidized bed coal gasification process: A coarse-grained CFD-DEM study
,”
Chem. Eng. Sci.
195
,
693
706
(
2019
).
75.
K.
Washino
,
C. H.
Hsu
,
T.
Kawaguchi
, and
Y.
Tsuji
, “
Similarity model for DEM simulation of fluidized bed
,”
J. Soc. Powder Technol. Jpn.
44
,
198
205
(
2007
).
76.
M.
Sakai
,
M.
Abe
,
Y.
Shigeto
,
S.
Mizutani
,
H.
Takahashi
,
A.
Viré
,
J. R.
Percival
,
J.
Xiang
, and
C. C.
Pain
, “
Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed
,”
Chem. Eng. J.
244
,
33
43
(
2014
).
77.
M.
Sakai
,
Y.
Yamada
,
Y.
Shigeto
,
K.
Shibata
,
V. M.
Kawasaki
, and
S.
Koshizuka
, “
Large-scale discrete element modeling in a fluidized bed
,”
Int. J. Numer. Methods Fluids
64
,
1319
1335
(
2010
).
78.
K.
Kuwagi
,
H.
Takeda
, and
M.
Horio
, “
The similar particle assembly (SPA) model, an approach for large-scale discrete element (DEM) simulation
,” in
Proceedings of 11th International Conference on Fluidization
(Engineering Conferences International,
2004
), pp.
243
250
.
79.
Z.
Liu
,
T.
Suda
,
T.
Tsuji
, and
T.
Toshitsugu
, “
Use of similarities in CFD-DEM simulation of fluidized bed
,” in
Proceedings of 14th International Conference on Fluidization XIV
(Engineering Conferences International,
2013
), p.
88
.
80.
F. P.
Di Maio
and
A.
Di Renzo
, “
Verification of scaling criteria for bubbling fluidized beds by DEM–CFD simulation
,”
Powder Technol.
248
,
161
171
(
2013
).
81.
Y.
Yue
,
T.
Wang
,
M.
Sakai
, and
Y.
Shen
, “
Particle-scale study of spout deflection in a flat-bottomed spout fluidized bed
,”
Chem. Eng. Sci.
205
,
121
133
(
2019
).
82.
Y.
Mori
,
C. Y.
Wu
, and
M.
Sakai
, “
Validation study on a scaling law model of the DEM in industrial gas-solid flows
,”
Powder Technol.
343
,
101
112
(
2019
).
83.
M.
Sakai
,
H.
Takahashi
,
C. C.
Pain
,
J. P. P.
Latham
, and
J.
Xiang
, “
Study on a large-scale discrete element model for fine particles in a fluidized bed
,”
Adv. Powder Technol.
23
,
673
681
(
2012
).
84.
K.
Takabatake
,
Y.
Mori
,
J. G.
Khinast
, and
M.
Sakai
, “
Numerical investigation of a coarse-grain discrete element method in solid mixing in a spouted bed
,”
Chem. Eng. J.
346
,
416
426
(
2018
).
85.
Z.
Jiang
,
K.
Rai
,
T.
Tsuji
,
K.
Washino
,
T.
Tanaka
, and
J.
Oshitani
, “
Upscaled DEM-CFD model for vibrated fluidized bed based on particle-scale similarities
,”
Adv. Powder Technol.
31
,
4598
4618
(
2020
).
86.
D.
Gidaspow
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description
(
Academic Press
,
New York
,
1994
).
87.
Z.
Jiang
,
T.
Tsuji
,
K.
Washino
, and
T.
Tanaka
, “
Influence of model particle size and spatial resolution in coarse-graining DEM-CFD simulation
,”
Adv. Powder Technol.
32
,
3525
3539
(
2021
).
88.
T.
Tsuji
,
K.
Higashida
,
Y.
Okuyama
, and
T.
Tanaka
, “
Fictitious particle method: A numerical model for flows including dense solids with large size difference
,”
AIChE J.
60
,
1606
1620
(
2014
).
89.
E.
Cano-Pleite
,
F.
Hernández-Jiménez
,
M.
de Vega
, and
A.
Acosta-Iborra
, “
Experimental study on the motion of isolated bubbles in a vertically vibrated fluidized bed
,”
Chem. Eng. J.
255
,
114
125
(
2014
).
90.
E.
Cano-Pleite
,
F.
Hernández-Jiménez
,
A.
Acosta-Iborra
, and
Y.
Mawatari
, “
Oscillatory behavior of the bed bulk and the bubbles in a vertically vibrated pseudo-2D bed in bubbling regime
,”
Chem. Eng. J.
312
,
228
242
(
2017
).
91.
J. A. C.
Gallas
,
H. J.
Herrmann
, and
S.
Sokołowski
, “
Convection cells in vibrating granular media
,”
Phys. Rev. Lett.
69
(
9
),
1371
(
1992
).
You do not currently have access to this content.