Cavitating vortex rope at part load (PL) condition at lower values of the Thoma number (σ) induces severe pressure fluctuation and efficiency reduction in a Francis turbine, which ultimately hinders continuous energy production. Installation of fins at draft tube (DT) can mitigate these instabilities and can safeguard the turbine operation with lower maintenance costs. The effect of fins on hydraulic performance and internal flow physics at PL condition with the variation of σ is examined in the present numerical investigation. For the two extreme opposite values of σ, the flow characteristics are predicted accurately for the turbine with and without fins by conducting transient simulations using ANSYS-CFX. The numerical findings on the structured and unstructured grid points are validated with the experimental results. The turbine's performance remains constant for higher values of Thoma numbers, and as the value decreases, the performance declines. The cavitation vortex rope formation inside the DT with fins is mitigated significantly at the minimum σ, while at the maximum value, the vortex rope with bubble generation is restricted. Compared to the without fin case, the swirl intensity is minimized remarkably (68%) with the presence of fins at the lowest σ. The maximum cavitation rate is manifested by the DT without fins, which is about 60% higher than the DT with fins. At minimum σ, extreme pressure pulsations are induced inside the DT without fins, which are reduced by 43% in the finned draft tube. Therefore, stable energy production is maximized with the installation of fins at both Thoma numbers.

1.
P. P.
Gohil
and
R. P.
Saini
, “
Effect of temperature, suction head and flow velocity on cavitation in a Francis turbine of small hydro power plant
,”
Energy
93
,
613
624
(
2015
).
2.
R.
Goyal
, “
Vortex core formation in a Francis turbine during transient operation from best efficiency point to high load
,”
Phys. Fluids
32
(
7
),
074109
(
2020
).
3.
S.
Pasche
,
F.
Avellan
, and
F.
Gallaire
, “
Part load vortex rope as a global unstable mode
,”
J. Fluids Eng.
139
(
5
),
051102
(
2017
).
4.
C.
Trivedi
,
I.
Iliev
,
O. G.
Dahlhaug
,
Z.
Markov
,
F.
Engstrom
, and
H.
Lysaker
, “
Investigation of a Francis turbine during speed variation: Inception of cavitation
,”
Renewable Energy
166
,
147
(
2020
).
5.
A.
Laouari
and
A.
Ghenaiet
, “
Investigation of steady and unsteady cavitating flows through a small Francis turbine
,”
Renewable Energy
172
,
841
861
(
2021
).
6.
R.
Goyal
,
M. J.
Cervantes
, and
B. K.
Gandhi
, “
Vortex rope formation in a high head model Francis turbine
,”
ASME J. Fluids Eng.
139
(
4
),
041102
(
2017
).
7.
R.
Goyal
,
B. K.
Gandhi
, and
M. J.
Cervantes
, “
Experimental study of mitigation of a spiral vortex breakdown at high Reynolds number under an adverse pressure gradient
,”
Phys. Fluids
29
(
10
),
104104
(
2017
).
8.
C.
Trivedi
and
O. G.
Dahlhaug
, “
Interaction between trailing edge wake and vortex rings in a Francis turbine at runaway condition: Compressible large eddy simulation
,”
Phys. Fluids
30
(
7
),
075101
(
2018
).
9.
C.
Nicolet
,
A.
Zobeiri
,
P.
Maruzewski
, and
F.
Avellan
, “
On the upper part load vortex rope in Francis turbine: Experimental investigation
,”
IOP Conf. Ser. Earth Environ. Sci.
12
,
012053
(
2010
).
10.
K. C.
Anup
,
Y. H.
Lee
, and
B.
Thapa
, “
CFD study on prediction of vortex shedding in draft tube of Francis turbine and vortex control techniques
,”
Renewable Energy
86
,
1406
(
2016
).
11.
A.
Favrel
,
Z.
Liu
,
M. H.
Khozaei
,
T.
Irie
, and
K.
Miyagawa
, “
Anti-phase oscillations of an elliptical cavitation vortex in Francis turbine draft tube
,”
Phys. Fluids
34
,
064112
(
2022
).
12.
H.
Jafarzadeh Juposhti
,
R.
Maddahian
, and
M. J.
Cervantes
, “
Optimization of axial water injection to mitigate the rotating vortex rope in a Francis turbine
,”
Renewable Energy
175
,
214
231
(
2021
).
13.
X.
Escaler
,
E.
Egusquiza
,
M.
Farhat
,
F.
Avellan
, and
M.
Coussirat
, “
Detection of cavitation in hydraulic turbines
,”
Mech. Syst. Signal Process.
20
(
4
),
983
1007
(
2006
).
14.
R.
Zhang
,
A.
Yu
,
M.
Nishi
, and
X.
Luo
, “
Numerical investigation of pressure fluctuation and cavitation inside a Francis turbine draft tube with air admission through a fin
,”
J. Phys. Conf. Ser.
1909
,
012017
(
2021
).
15.
P. K.
Dörfler
, “
Analysis of the Francis turbine upper-part-load pulsation—Part I: Experimental results vs. hydro-acoustic model
,”
IOP Conf. Ser. Earth Environ. Sci.
240
(
5
),
052022
(
2019
).
16.
J.
Arpe
,
C.
Nicolet
, and
F.
Avellan
, “
Experimental evidence of hydroacoustic pressure waves in a Francis turbine elbow draft tube for low discharge conditions
,”
ASME J. Fluids Eng.
131
(
8
),
081102
(
2009
).
17.
H.
Grein
, “
Vibration phenomena in Francis turbines: Their causes and prevention
,” in
Proceedings of 10th IAHR Symposium, Escher Wyss News
(
1981
), Vol.
54–55
.
18.
W. F.
Li
,
J. J.
Feng
,
H.
Wu
,
J. L.
Lu
,
W. L.
Liao
, and
X. Q.
Luo
, “
Numerical investigation of pressure fluctuation reducing in draft tube of Francis turbines
,”
Int. J. Fluid Mach. Syst.
8
(
3
),
202
208
(
2015
).
19.
S.
Muntean
,
R. F.
Susan-Resiga
,
V. C.
Cǎmpian
,
C.
Dumbrava
, and
A.
Cuzmoş
, “
In situ unsteady pressure measurements on the draft tube cone of the Francis turbine with air injection over an extended operating range
,”
UPB Sci. Bull. Ser. D
76
(
3
),
173
180
(
2014
).
20.
M.
Nishi
,
T.
Kubota
,
S.
Matsunaga
, and
Y.
Senoo
, “
Study on swirl flow and surge in an elbow type draft tube
,”
Trans. Jpn. Soc. Mech. Eng. Ser. B
48
(
431
),
1238
(
1982
).
21.
M.
Nishi
,
X. M.
Wang
,
K.
Yoshida
,
T.
Takahashi
, and
T.
Tsukamoto
, “
An experimental study on fins, their role in control of the draft tube surging
,” in
Proceedings of the XVIII IAHR Symposium on Hydraulic Machinery and Cavitation
(
Springer
,
1996
), pp.
905
914
.
22.
Z.
Chen
and
Y. D.
Choi
, “
Suppression of cavitation in the draft tube of Francis turbine model by J-Groove
,”
Proc. Inst. Mech. Eng. Part C
233
(
9
),
3100
(
2019
).
23.
Z. D.
Qian
,
W.
Li
,
W. X.
Huai
, and
Y. L.
Wu
, “
The effect of runner cone design on pressure oscillation characteristics in a Francis hydraulic turbine
,”
Proc. Inst. Mech. Eng. Part A
226
(
1
),
137
150
(
2012
).
24.
A.
Muhirwa
,
W.
Cai
,
W.
Su
,
Q.
Liu
,
M.
Binama
,
B.
Li
, and
J.
Wu
, “
A review on remedial attempts to counteract the power generation compromise from draft tubes of hydropower plants
,”
Renewable Energy
150
,
743
764
(
2020
).
25.
R. H.
Thicke
, “
Practical solutions for draft tube instability
,”
Int. Water Power Dam Constr.
33
(
2
),
31
37
(
1981
).
26.
M.
Nishi
,
K.
Yoshida
,
M.
Fujii
, and
K.
Miyamoto
, “
A study on hybrid control of draft tube surge
,” in
Proceedings of XXIst IAHR Symposium on Hydraulic Machinery and Systems
(
Lausanne, EPFL
,
Switzerland
,
2002
), pp.
35
39
.
27.
M. A.
Shahzer
,
S.-J.
Kim
,
Y.
Cho
, and
J.-H.
Kim
, “
Suppression of vortex rope formation and pressure fluctuation using anti-swirl fins in a Francis turbine model at part load condition with cavitation inception point
,”
Phys. Fluids
34
,
097106
(
2022
).
28.
International Electrotechnical Commission
, “
Hydraulic turbines, storage pumps and pump-turbines–model acceptance tests
,” Standard No. IEC 60193 (
IEC
,
Geneva
,
2019
).
29.
K-Water Convergence Institute
, “
Hydraulic power 2nd model turbine efficiency performance test result report
,”
Report No. 20IFIP-B128593-04
(
Korea Agency for Infrastructure Technology Advancement
,
Anyang-si
,
2020
).
30.
H.
Foroutan
, “
Simulation, analysis, and mitigation of vortex rope formation in the draft tube of hydraulic turbines
,” Ph.D. dissertation (
Pennsylvania State University
,
2015
).
31.
D. C.
Wilcox
,
Turbulence Modelling for CFD
, 3rd ed. (
DCW Industries
,
2006
).
32.
M. M.
Shamsuddeen
,
J.
Park
,
Y. S.
Choi
, and
J. H.
Kim
, “
Unsteady multi-phase cavitation analysis on the effect of anti-cavity fin installed on a Kaplan turbine runner
,”
Renewable Energy
162
,
861
876
(
2020
).
33.
N.
Sotoudeh
,
R.
Maddahian
, and
M. J.
Cervantes
, “
Investigation of rotating vortex rope formation during load variation in a Francis turbine draft tube
,”
Renewable Energy
151
,
238
254
(
2020
).
34.
T.
Krappel
,
A.
Ruprecht
,
S.
Riedelbauch
,
R.
Jester-Zuerker
, and
A.
Jung
, “
Flow simulation of Francis turbine using a hybrid RANS-LES turbulence model
,” in
5th IAHR International Workshop on Cavitation and Dynamic Problems in Hydraulic
, September 8–11 (
2013
), Vol.
032001
.
35.
T.
Krappel
,
A.
Ruprecht
,
S.
Riedelbauch
,
R.
Jester-Zuerker
, and
A.
Jung
, “
Investigation of Francis turbine part load instabilities using flow simulations with a hybrid RANS-LES turbulence model
,”
IOP Conf. Ser. Earth Environ. Sci.
22
,
032001
(
2014
).
36.
A.
Minakov
,
D.
Platonov
,
A.
Sentyabov
, and
A.
Gavrilov
, “
Francis-99 turbine numerical flow simulation of steady state operation using RANS and RANS/LES turbulence model
,”
J. Phys.: Conf. Ser.
782
,
012005
(
2017
).
37.
ANSYS
,
ANSYS CFX-Solver Theory Guide, Release 16.0
(
ANSYS, Inc
.,
Southpoint, Canonsburg, Pennsylvania
,
2015
).
38.
X. W.
Luo
,
B.
Ji
, and
Y.
Tsujimoto
, “
A review of cavitation in hydraulic machinery
,”
J. Hydrodyn.
28
(
3
),
335
(
2016
).
39.
P. J.
Zwart
,
A. G.
Gerber
, and
T.
Belamri
, “
A two-phase flow model for predicting cavitation dynamics
,” in
5th International Conference on Multiphase Flow
(
ICMF
,
Yokohama, Japan
,
2004
), p.
152
.
40.
Y.
Gao
,
H.
Liu
,
G.
Guo
,
Y.
Lin
,
Y.
Gu
, and
Y.
Ni
, “
Effect of cavitation evolution on power characteristics of tidal current turbine
,”
Phys. Fluids
35
(
1
),
013307
(
2023
).
41.
S.-J.
Kim
,
J.-W.
Suh
,
H.-M.
Yang
,
J.
Park
, and
J.-H.
Kim
, “
Internal flow phenomena of a pump–turbine model in turbine mode with different Thoma numbers
,”
Renewable Energy
184
,
510
525
(
2022
).
42.
K. C.
Anup
,
B.
Thapa
, and
Y. H.
Lee
, “
Transient numerical analysis of rotor-stator interaction in a Francis turbine
,”
Renewable Energy
65
,
227
235
(
2014
).
43.
C.
Widmer
,
T.
Staubli
, and
N.
Ledergerber
, “
Unstable characteristics and rotating stall in turbine brake operation of pump-turbines
,”
ASME J. Fluids Eng.
133
(
4
),
041101
(
2011
).
44.
I. B.
Celik
,
U.
Ghia
,
P. J.
Roache
,
C. J.
Freitas
,
H.
Coleman
, and
P. E.
Raad
, “
Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
,”
ASME J. Fluids Eng.
130
(
7
),
078001
(
2008
).
45.
Z.
Yuan
,
Y.
Zhang
,
W.
Zhou
, and
C.
Wang
, “
Hydraulic loss analysis in a pump-turbine with special emphasis on local rigid vortex and shear
,”
Phys. Fluids
34
(
12
),
125101
(
2022
).
46.
S. J.
Kim
,
Y. S.
Choi
,
Y.
Cho
,
J. W.
Choi
,
J. J.
Hyun
,
W. G.
Joo
, and
J. H.
Kim
, “
Effect of fins on the internal flow characteristics in the draft tube of a Francis turbine model
,”
Energies
13
(
11
),
2806
(
2020
).
47.
X.
Zhou
,
H. G.
Wu
, and
C. Z.
Shi
, “
Numerical and experimental investigation of the effect of baffles on flow instabilities in a Francis turbine draft tube under partial load conditions
,”
Adv. Mech. Eng.
11
(
1
),
1
15
(
2019
).
48.
X.
Zhou
,
C.
Shi
,
K.
Miyagawa
, and
H.
Wu
, “
Effect of modified draft tube with inclined conical diffuser on flow instabilities in Francis turbine
,”
Renewable Energy
172
,
606
617
(
2021
).
49.
S.
Khullar
,
K. M.
Singh
,
M. J.
Cervantes
, and
B. K.
Gandhi
, “
Influence of runner cone profile and axial water jet injection in a low head Francis turbine at part load
,”
Sustainable Energy Technol. Assess.
50
,
101810
(
2022
).
50.
P. K.
Dörfler
, “
Analysis of the Francis turbine upper-part-load pulsation—Part II: Mechanism of self-excitation
,”
IOP Conf. Ser.: Earth Environ. Sci.
240
(
5
),
052023
(
2019
).
You do not currently have access to this content.