A laser pulse focused near the closed end of a glass capillary partially filled with water creates a vapor bubble and an associated pressure wave. The pressure wave travels through the liquid toward the meniscus where it is reflected, creating a fast, focused microjet. In this study, we selectively coat the hydrophilic glass capillaries with hydrophobic strips along the capillary. The result after filling the capillary is a static meniscus which has a curvature markedly different than an unmodified capillary. This tilting asymmetry in the static meniscus alters the trajectory of the ensuing jets. The hydrophobic strips also influence the advancing contact line and receding contact line as the vapor bubble expands and collapses. We present thirteen different permutations of this system which includes three geometries and four coating schemes. The combination of geometry and coatings influences the jet breakup, the resulting drop size distribution, the trajectory of the jet tip, and the consistency of jet characteristics across trials. The inclusion of hydrophobic strips promotes jetting in line with the channel axis, with the most effective arrangement dependent on channel size.

1.
G.
Bidone
,
Expériences sur la forme et sur la direction des veines et des courans d'eau lancés par diverses ouvertures, Par Georges Bidone
(
l'Imprimerie royale
,
1829
).
2.
F.
Savart
, “
Memoire sur la constitution des veines liquides lancees par des orifices circulaires en mince paroi
,”
Anal. Chem.
53
,
337
386
(
1833
).
3.
G.
Amini
,
Y.
Lv
,
A.
Dolatabadi
, and
M.
Ihme
, “
Instability of elliptic liquid jets: Temporal linear stability theory and experimental analysis
,”
Phys. Fluids
26
,
114105
(
2014
).
4.
N.
Ashgriz
and
A.
Yarin
, “
Capillary instability of free liquid jets
,” in
Handbook of Atomization and Sprays
(
Springer
,
2011
), pp.
3
53
.
5.
J.
Eggers
and
E.
Villermaux
, “
Physics of liquid jets
,”
Rep. Prog. Phys.
71
,
036601
(
2008
).
6.
W.
Sirignano
and
C.
Mehring
, “
Review of theory of distortion and disintegration of liquid streams
,”
Prog. Energy Combust. Sci.
26
,
609
655
(
2000
).
7.
V.
Entov
and
A.
Yarin
, “
The dynamics of thin liquid jets in air
,”
J. Fluid Mech.
140
,
91
111
(
1984
).
8.
V.
Entov
and
A.
Yarin
, “
Dynamical equations for a liquid jet
,”
Fluid Dyn.
15
,
644
649
(
1980
).
9.
D.
Jarrahbashi
and
W. A.
Sirignano
, “
Acceleration effects on instability of high-pressure fuel jets
,” in
Proceedings of the Twelfth International Conference on Liquid Atomisation and Spray Systems (ICLASS)
(ILASS International,
2012
), pp.
1
8
.
10.
S.
Mitragotri
, “
Current status and future prospects of needle-free liquid jet injectors
,”
Nat. Rev. Drug Discovery
5
,
543
548
(
2006
).
11.
D. H.
Reneker
,
A. L.
Yarin
,
H.
Fong
, and
S.
Koombhongse
, “
Bending instability of electrically charged liquid jets of polymer solutions in electrospinning
,”
J. Appl. Phys.
87
,
4531
4547
(
2000
).
12.
V.
Menezes
,
S.
Kumar
, and
K.
Takayama
, “
Shock wave driven liquid microjets for drug delivery
,”
Phys. Fluids
106
,
086102
(
2009
).
13.
Y.
Tagawa
,
N.
Oudalov
,
A.
El Ghalbzouri
,
C.
Sun
, and
D.
Lohse
, “
Needle-free injection into skin and soft matter with highly focused microjets
,”
Lab Chip
13
,
1357
1363
(
2013
).
14.
E. P.
Furlani
,
B. G.
Price
,
G.
Hawkins
, and
A. G.
Lopez
, “
Thermally induced marangoni instability of liquid microjets with application to continuous inkjet printing
,” in
Proceedings of NSTI Nanotechnology Conference
(Nano Science and Technology Institute,
2006
), pp.
534
537
.
15.
J. R.
Castrejon-Pita
,
W.
Baxter
,
J.
Morgan
,
S.
Temple
,
G.
Martin
, and
I. M.
Hutchings
, “
Future, opportunities and challenges of inkjet technologies
,”
Atomization Sprays
23
,
541
565
(
2013
).
16.
J. C.
Carter
,
R. M.
Alvis
,
S. B.
Brown
,
K. C.
Langry
,
T. S.
Wilson
,
M. T.
McBride
,
M.
Myrick
,
W. R.
Cox
,
M. E.
Grove
, and
B. W.
Colston
, “
Fabricating optical fiber imaging sensors using inkjet printing technology: A pH sensor proof-of-concept
,”
Biosens. Bioelectron.
21
,
1359
1364
(
2006
).
17.
D.
MacFarlane
,
V.
Narayan
,
J.
Tatum
,
W.
Cox
,
T.
Chen
, and
D.
Hayes
, “
Microjet fabrication of microlens arrays
,”
IEEE Photonics Technol. Lett.
6
,
1112
1114
(
1994
).
18.
A.
Kiyama
,
Y.
Tagawa
,
K.
Ando
, and
M.
Kameda
, “
Effects of a water hammer and cavitation on jet formation in a test tube
,”
J. Fluid Mech.
787
,
224
236
(
2016
).
19.
A.
Antkowiak
,
N.
Bremond
,
S.
Le Dizes
, and
E.
Villermaux
, “
Short-term dynamics of a density interface following an impact
,”
J. Fluid Mech.
577
,
241
250
(
2007
).
20.
N.
Reis
,
C.
Ainsley
, and
B.
Derby
, “
Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors
,”
J. Appl. Phys.
97
,
094903
(
2005
).
21.
L.
Oyarte Gálvez
,
A.
Fraters
,
H. L.
Offerhaus
,
M.
Versluis
,
I. W.
Hunter
, and
D.
Fernández Rivas
, “
Microfluidics control the ballistic energy of thermocavitation liquid jets for needle-free injections
,”
J. Appl. Phys.
127
,
104901
(
2020
).
22.
Y.
Tagawa
,
N.
Oudalov
,
C. W.
Visser
,
I. R.
Peters
,
D.
van der Meer
,
C.
Sun
,
A.
Prosperetti
, and
D.
Lohse
, “
Highly focused supersonic microjets
,”
Phys. Rev. X
2
,
031002
(
2012
).
23.
I. R.
Peters
,
Y.
Tagawa
,
N.
Oudalov
,
C.
Sun
,
A.
Prosperetti
,
D.
Lohse
, and
D.
van der Meer
, “
Highly focused supersonic microjets: Numerical simulations
,”
J. Fluid Mech.
719
,
587
605
(
2013
).
24.
J.
Schoppink
and
D. F.
Rivas
, “
Jet injectors: Perspectives for small volume delivery with lasers
,”
Adv. Drug Delivery Rev.
182
,
114109
(
2022
).
25.
J.
Krizek
,
P.
Delrot
, and
C.
Moser
, “
Repetitive regime of highly focused liquid microjets for needle-free injection
,”
Sci. Rep.
10
,
1
9
(
2020
).
26.
L.
Rayleigh
, “
On the instability of jets
,”
Proc. London Math. Soc.
1
,
4
13
(
1878
).
27.
Handbook of Atomization and Sprays: Theory and Applications
, edited by
N.
Ashgriz
(
Springer Science & Business Media
,
2011
).
28.
C. B.
Rodríguez
,
C. W.
Visser
,
S.
Schlautmann
,
D. F.
Rivas
, and
R.
Ramos-Garcia
, “
Toward jet injection by continuous-wave laser cavitation
,”
J. Biomed. Opt.
22
,
105003
(
2017
).
29.
J. M.
Gordillo
,
H.
Onuki
, and
Y.
Tagawa
, “
Impulsive generation of jets by flow focusing
,”
J. Fluid Mech.
894
,
A3
(
2020
).
30.
A. M.
Sterling
and
C.
Sleicher
, “
The instability of capillary jets
,”
J. Fluid Mech.
68
,
477
495
(
1975
).
31.
M.
Birouk
and
N.
Lekic
, “
Liquid jet breakup in quiescent atmosphere: A review
,”
Atomization Sprays
19
,
501
528
(
2009
).
32.
F.
Wang
and
T.
Fang
, “
Liquid jet breakup for non-circular orifices under low pressures
,”
Int. J. Multiphase Flow
72
,
248
262
(
2015
).
33.
G.
Amini
and
A.
Dolatabadi
, “
Axis-switching and breakup of low-speed elliptic liquid jets
,”
Int. J. Multiphase Flow
42
,
96
103
(
2012
).
34.
D. T.
Jordan
,
N. M.
Ribe
,
A.
Deblais
, and
D.
Bonn
, “
Chain oscillations in liquid jets
,”
Phys. Rev. Fluids
7
,
104001
(
2022
).
35.
M.
Park
,
H.
Jang
,
F. V.
Sirotkin
, and
J. J.
Yoh
, “
Er:YAG laser pulse for small-dose splashback-free microjet transdermal drug delivery
,”
Opt. Lett.
37
,
3894
3896
(
2012
).
36.
D. L.
van der Ven
,
D.
Morrone
,
M. A.
Quetzeri-Santiago
, and
D. F.
Rivas
, “
Microfluidic jet impact: Spreading, splashing, soft substrate deformation and injection
,”
J. Colloid Interface Sci.
636
,
549
(
2023
).
37.
K.
Cu
,
R.
Bansal
,
S.
Mitragotri
, and
D.
Fernandez Rivas
, “
Delivery strategies for skin: Comparison of nanoliter jets, needles and topical solutions
,”
Ann. Biomed. Eng.
48
,
2028
2039
(
2020
).
38.
H.
Notsu
,
W.
Kubo
,
I.
Shitanda
, and
T.
Tatsuma
, “
Super-hydrophobic/super-hydrophilic patterning of gold surfaces by photocatalytic lithography
,”
J. Mater. Chem.
15
,
1523
1527
(
2005
).
39.
R.
Deng
,
Y.
He
,
Y.
Qin
,
Q.
Chen
, and
L.
Chen
, “
Measuring pure water absorption coefficient in the near-infrared spectrum (900–2500 nm)
,”
J. Remote Sens.
16
,
192
206
(
2012
).
40.
M. A.
Quetzeri-Santiago
,
I. W.
Hunter
,
D.
Van Der Meer
, and
D. F.
Rivas
, “
Impact of a microfluidic jet on a pendant droplet
,”
Soft Matter
17
,
7466
7475
(
2021
).
41.
B.
Zhang
,
D.
Banks
,
V.
Robles
,
L. F.
Devia Cruz
, and
G.
Aguilar
, “
High resolution optical investigation of laser intensity and solution temperature effects on thermocavitation
,”
Exp. Therm. Fluid Sci.
136
,
110683
(
2022
).
42.
C.
Clanet
and
J.
Lasheras
, “
Transition from dripping to jetting
,”
J. Fluid Mech.
383
,
307
326
(
1999
).
43.
P.
Marmottant
and
E.
Villermaux
, “
Fragmentation of stretched liquid ligaments
,”
Phys. Fluids
16
,
2732
2741
(
2004
).
44.
B.
Keshavarz
,
E. C.
Houze
,
J. R.
Moore
,
M. R.
Koerner
, and
G. H.
McKinley
, “
Ligament mediated fragmentation of viscoelastic liquids
,”
Phys. Rev. Lett.
117
,
154502
(
2016
).
45.
S.
Kooij
,
R.
Sijs
,
M. M.
Denn
,
E.
Villermaux
, and
D.
Bonn
, “
What determines the drop size in sprays?
,”
Phys. Rev. X
8
,
031019
(
2018
).
46.
E.
Villermaux
, “
Fragmentation versus cohesion
,”
J. Fluid Mech.
898
,
P1
(
2020
).
47.
M. A.
Quetzeri-Santiago
and
D. F.
Rivas
, “
Cavity dynamics after the injection of a microfluidic jet onto capillary bridges
,”
Soft Matter
19
,
245
257
(
2023
).
48.
L.
Oyarte Gálvez
,
M.
Brió Pérez
, and
D.
Fernández Rivas
, “
High speed imaging of solid needle and liquid micro-jet injections
,”
J. Appl. Phys.
125
,
144504
(
2019
).

Supplementary Material

You do not currently have access to this content.