The use of machine learning techniques in the development of microscopic swimmers has drawn considerable attention in recent years. In particular, reinforcement learning has been shown useful in enabling swimmers to learn effective propulsion strategies through its interactions with the surroundings. In this work, we apply a reinforcement learning approach to identify swimming gaits of a multi-link model swimmer. The swimmer consists of multiple rigid links connected serially with hinges, which can rotate freely to change the relative angles between neighboring links. Purcell [“Life at low Reynolds number,” Am. J. Phys. 45, 3 (1977)] demonstrated how the particular case of a three-link swimmer (now known as Purcell's swimmer) can perform a prescribed sequence of hinge rotation to generate self-propulsion in the absence of inertia. Here, without relying on any prior knowledge of low-Reynolds-number locomotion, we first demonstrate the use of reinforcement learning in identifying the classical swimming gaits of Purcell's swimmer for case of three links. We next examine the new swimming gaits acquired by the learning process as the number of links increases. We also consider the scenarios when only a single hinge is allowed to rotate at a time and when simultaneous rotation of multiple hinges is allowed. We contrast the difference in the locomotory gaits learned by the swimmers in these scenarios and discuss their propulsion performance. Taken together, our results demonstrate how a simple reinforcement learning technique can be applied to identify both classical and new swimming gaits at low Reynolds numbers.

1.
G. I.
Taylor
, “
Analysis of the swimming of microscopic organisms
,”
Proc. R. Soc. London, Ser. A
209
,
447
461
(
1951
).
2.
L. J.
Fauci
and
R.
Dillon
, “
Biofluidmechanics of reproduction
,”
Annu. Rev. Fluid Mech.
38
,
371
394
(
2006
).
3.
C.
Brennen
and
H.
Winet
, “
Fluid mechanics of propulsion by cilia and flagella
,”
Annu. Rev. Fluid Mech.
9
,
339
398
(
1977
).
4.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
5.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
, “
Physics of microswimmers—Single particle motion and collective behavior: A review
,”
Rep. Prog. Phys.
78
,
056601
(
2015
).
6.
J. M.
Yeomans
,
D. O.
Pushkin
, and
H.
Shum
, “
An introduction to the hydrodynamics of swimming microorganisms
,”
Eur. Phys. J. Spec. Top.
223
,
1771
1785
(
2014
).
7.
O. S.
Pak
and
E.
Lauga
, “
Theoretical models of low-Reynolds-number locomotion
,” in
Fluid-Structure Interactions in Low-Reynolds-Number Flows
(
The Royal Society of Chemistry
,
2016
), Chap. 4, pp.
100
167
.
8.
E. M.
Purcell
, “
Life at low Reynolds number
,”
Am. J. Phys.
45
,
3
(
1977
).
9.
E.
Lauga
, “
Bacterial hydrodynamics
,”
Annu. Rev. Fluid Mech.
48
,
105
130
(
2016
).
10.
M.
Arroyo
,
L.
Heltai
,
D.
Millán
, and
A.
DeSimone
, “
Reverse engineering the euglenoid movement
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
17874
17879
(
2012
).
11.
B. J.
Nelson
,
I. K.
Kaliakatsos
, and
J. J.
Abbott
, “
Microrobots for minimally invasive medicine
,”
Annu. Rev. Biomed. Eng.
12
,
55
85
(
2010
).
12.
J.
Wang
and
W.
Gao
, “
Nano/microscale motors: Biomedical opportunities and challenges
,”
ACS Nano
6
,
5745
5751
(
2012
).
13.
Z.
Wu
,
Y.
Chen
,
D.
Mukasa
,
O. S.
Pak
, and
W.
Gao
, “
Medical micro/nanorobots in complex media
,”
Chem. Soc. Rev.
49
,
8088
8112
(
2020
).
14.
A. C. H.
Tsang
,
E.
Demir
,
Y.
Ding
, and
O. S.
Pak
, “
Roads to smart artificial microswimmers
,”
Adv. Intell. Syst.
2
,
1900137
(
2020
).
15.
L. E.
Becker
,
S. A.
Koehler
, and
H. A.
Stone
, “
On self-propulsion of micro-machines at low Reynolds number: Purcell's three-link swimmer
,”
J. Fluid Mech.
490
,
15
35
(
2003
).
16.
D.
Tam
and
A. E.
Hosoi
, “
Optimal stroke patterns for Purcell's three-link swimmer
,”
Phys. Rev. Lett.
98
,
068105
(
2007
).
17.
O.
Wiezel
and
Y.
Or
, “
Optimization and small-amplitude analysis of Purcell's three-link microswimmer model
,”
Proc. R. Soc. London, Ser. A
472
,
20160425
(
2016
).
18.
L.
Giraldi
,
P.
Martinon
, and
M.
Zoppello
, “
Optimal design of Purcell's three-link swimmer
,”
Phys. Rev. E
91
,
023012
(
2015
).
19.
R.
Marchello
,
M.
Morandotti
,
H.
Shum
, and
M.
Zoppello
, “
The N-link swimmer in three dimensions: Controllability and optimality results
,”
Acta Appl. Math.
178
,
6
(
2022
).
20.
F.
Alouges
,
A.
DeSimone
,
L.
Giraldi
, and
M.
Zoppello
, “
Self-propulsion of slender micro-swimmers by curvature control: N-link swimmers
,”
Int. J. Non-Linear Mech.
56
,
132
141
(
2013
).
21.
F.
Alouges
,
A.
DeSimone
,
L.
Giraldi
, and
M.
Zoppello
, “
Can magnetic multilayers propel artificial microswimmers mimicking sperm cells?
,”
Soft Rob.
2
,
117
128
(
2015
).
22.
C.
Moreau
,
L.
Giraldi
, and
H.
Gadêlha
, “
The asymptotic coarse-graining formulation of slender-rods, bio-filaments and flagella
,”
J. R. Soc. Interface
15
,
20180235
(
2018
).
23.
K.
Qin
,
Z.
Peng
,
Y.
Chen
,
H.
Nganguia
,
L.
Zhu
, and
O. S.
Pak
, “
Propulsion of an elastic filament in a shear-thinning fluid
,”
Soft Matter
17
,
3829
3839
(
2021
).
24.
Y.
Jiao
,
F.
Ling
,
S.
Heydari
,
N.
Heess
,
J.
Merel
, and
E.
Kanso
, “
Learning to swim in potential flow
,”
Phys. Rev. Fluids
6
,
050505
(
2021
).
25.
M.
Gazzola
,
B.
Hejazialhosseini
, and
P.
Koumoutsakos
, “
Reinforcement learning and wavelet adapted vortex methods for simulations of self-propelled swimmers
,”
SIAM J. Sci. Comput.
36
,
B622
B639
(
2014
).
26.
S.
Colabrese
,
K.
Gustavsson
,
A.
Celani
, and
L.
Biferale
, “
Flow navigation by smart microswimmers via reinforcement learning
,”
Phys. Rev. Lett.
118
,
158004
(
2017
).
27.
A. C. H.
Tsang
,
P. W.
Tong
,
S.
Nallan
, and
O. S.
Pak
, “
Self-learning how to swim at low Reynolds number
,”
Phys. Rev. Fluids
5
,
074101
(
2020
).
28.
M.
Mirzakhanloo
,
S.
Esmaeilzadeh
, and
M.-R.
Alam
, “
Active cloaking in stokes flows via reinforcement learning
,”
J. Fluid Mech.
903
,
A34
(
2020
).
29.
J. K.
Alageshan
,
A. K.
Verma
,
J.
Bec
, and
R.
Pandit
, “
Machine learning strategies for path-planning microswimmers in turbulent flows
,”
Phys. Rev. E
101
,
043110
(
2020
).
30.
S.
Muiños-Landin
,
A.
Fischer
,
V.
Holubec
, and
F.
Cichos
, “
Reinforcement learning with artificial microswimmers
,”
Sci. Rob.
6
,
eabd9285
(
2021
).
31.
Y.
Liu
,
Z.
Zou
,
A. C. H.
Tsang
,
O. S.
Pak
, and
Y.-N.
Young
, “
Mechanical rotation at low Reynolds number via reinforcement learning
,”
Phys. Fluids
33
,
062007
(
2021
).
32.
B.
Hartl
,
M.
Hübl
,
G.
Kahl
, and
A.
Zöttl
, “
Microswimmers learning chemotaxis with genetic algorithms
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2019683118
(
2021
).
33.
J.
Qiu
,
N.
Mousavi
,
K.
Gustavsson
,
C.
Xu
,
B.
Mehlig
, and
L.
Zhao
, “
Navigation of micro-swimmers in steady flow: The importance of symmetries
,”
J. Fluid Mech.
932
,
A10
(
2022
).
34.
M.
Nasiri
and
B.
Liebchen
, “
Reinforcement learning of optimal active particle navigation
,” arXiv:2202.00812 (
2022
).
35.
G.
Zhu
,
W.-Z.
Fang
, and
L.
Zhu
, “
Optimising low-Reynolds-number predation via optimal control and reinforcement learning
,” arXiv:2203.07196 (
2022
).
36.
Z.
Zou
,
Y.
Liu
,
Y.-N.
Young
,
O. S.
Pak
, and
A. C.
Tsang
, “
Gait switching and targeted navigation of microswimmers via deep reinforcement learning
,”
Commun. Phys.
5
,
158
(
2022
).
37.
A.
Najafi
and
R.
Golestanian
, “
Simple swimmer at low Reynolds number: Three linked spheres
,”
Phys. Rev. E
69
,
062901
(
2004
).
38.
R.
Dreyfus
,
J.
Baudry
, and
H. A.
Stone
, “
Purcell's ‘rotator’: Mechanical rotation at low Reynolds number
,”
Eur. Phys. J. B
47
,
161
164
(
2005
).
39.
L.
Amoudruz
and
P.
Koumoutsakos
, “
Independent control and path planning of microswimmers with a uniform magnetic field
,”
Adv. Intell. Syst.
4
,
2100183
(
2022
).
40.
M. R.
Behrens
and
W. C.
Ruder
, “
Smart magnetic microrobots learn to swim with deep reinforcement learning
,”
Adv. Intell. Syst.
4
,
2270049
(
2022
).
41.
J.
Gray
and
G. J.
Hancock
, “
The propulsion of sea-urchin spermatozoa
,”
J. Exp. Biol.
32
,
802
814
(
1955
).
42.
J.
Lighthill
,
Mathematical Biofluiddynamics
(
SIAM
,
Philadelphia
,
1975
).
43.
O. S.
Pak
and
E.
Lauga
, “
Theoretical models in low-Reynolds-number locomotion
,” in
Fluid-Structure Interactions in Low-Reynolds-Number Flows
, edited by
C.
Duprat
and
H. A.
Stone
(
Royal Society of Chemistry
,
2014
), p.
100
.
44.
C.
Watkins
and
P.
Dayan
, “
Q-learning
,”
Mach. Learn.
8
,
279
292
(
1992
).
45.
R. S.
Sutton
and
A. G.
Barto
,
Reinforcement Learning: An Introduction
(
MIT Press
,
2018
).
46.
J.
Schulman
,
F.
Wolski
,
P.
Dhariwal
,
A.
Radford
, and
O.
Klimov
, “
Proximal policy optimization algorithms
,” arXiv:1707.06347 (
2017
).
47.
V.
Mnih
,
K.
Kavukcuoglu
,
D.
Silver
,
A. A.
Rusu
,
J.
Veness
,
M. G.
Bellemare
,
A.
Graves
,
M.
Riedmiller
,
A. K.
Fidjeland
,
G.
Ostrovski
,
S.
Petersen
,
C.
Beattie
,
A.
Sadik
,
I.
Antonoglou
,
H.
King
,
D.
Kumaran
,
D.
Wierstra
,
S.
Legg
, and
D.
Hassabis
, “
Human-level control through deep reinforcement learning
,”
Nature
518
,
529
(
2015
).
48.
V.
Mnih
,
A. P.
Badia
,
M.
Mirza
,
A.
Graves
,
T.
Lillicrap
,
T.
Harley
,
D.
Silver
, and
K.
Kavukcuoglu
, “
Asynchronous methods for deep reinforcement learning
,” in
ICML
(
PMLR
,
2016
), pp.
1928
1937
.
49.
Y.
Duan
,
X.
Chen
,
R.
Houthooft
,
J.
Schulman
, and
P.
Abbeel
, “
Benchmarking deep reinforcement learning for continuous control
,” in
ICML
(
PMLR
,
2016
), pp.
1329
1338
.
50.
Z.
Wang
,
V.
Bapst
,
N.
Heess
,
V.
Mnih
,
R.
Munos
,
K.
Kavukcuoglu
, and
N.
de Freitas
, “
Sample efficient actor-critic with experience replay
,” arXiv:1611.01224 (
2016
).
You do not currently have access to this content.