Collective movements are common in nature, such as the swimming of fish schools and the flight of birds in formation. The aero/hydrodynamic performance of such movements is a research hotspot at present. As a continuation of the previous research [X. G. Meng et al., “Aerodynamic performance and flow mechanism of multi-flapping wings with different spatial arrangements,” Phys. Fluids 34, 021907 (2022)], this study examined the aerodynamic interference effect of three tandem flapping wings at different morphological and kinematic parameters. Computational fluid dynamics was used with the aspect ratio (AR) of the wing ranging from 2.75 to 4.75, stroke amplitude (Φ) from 60° to 120°, advance ratio (J) from 0.25 to 0.6, and Reynolds number (Re) from 200 to 2000. The aerodynamic interference for the tandem flapping wings includes three effects, namely, the narrow channel effect, the downwash effect, and the wake capture effect. The AR, Φ, and J can significantly influence the evolution of the vortex structures of the three-flapping-wing system, especially the velocity of wake vortices developing downstream. As a result, the downwash effect in the downstroke and the wake capture effect in the upstroke change obviously with these parameters. Due to the decreasing viscous effect with the increase in Re, the wake capture effect, which can improve the thrust of the wings, is more obvious at higher Re. This study further deepens our insight into the flow physics of the multi-flapping wings and provides a theoretical basis for improving the aerodynamic performance of multi-flapping-wing vehicles in the future.

1.
Z. J.
Wang
, “
Dissecting insect flight
,”
Annu. Rev. Fluid Mech.
37
,
183
210
(
2005
).
2.
S. P.
Sane
, “
The aerodynamics of insect flight
,”
J. Exp. Biol.
206
(
23
),
4191
4208
(
2003
).
3.
Z. J.
Wang
and
D.
Russell
, “
Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight
,”
Phys. Rev. Lett.
99
,
148101
(
2007
).
4.
S. J.
Portugal
,
T. Y.
Hubel
,
J.
Fritz
,
S.
Heese
,
D.
Trobe
,
B.
Voelkl
,
S.
Hailes
,
A. M.
Wilson
, and
J. R.
Usherwood
, “
Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight
,”
Nature
505
,
399
(
2014
).
5.
J. C.
Liao
,
D. N.
Beal
,
G. V.
Lauder
, and
M. S.
Triantafyllou
, “
Fish exploiting vortices decrease muscle activity
,”
Science
302
,
1566
(
2003
).
6.
H.
Huang
and
M.
Sun
, “
Dragonfly forewing-hindwing interaction at various flight speeds and wing phasing
,”
AIAA J.
45
,
508
(
2007
).
7.
J. R.
Usherwood
and
F.-O.
Lehmann
, “
Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl
,”
J. R. Soc. Interface
5
,
1303
(
2008
).
8.
T. M.
Broering
and
Y. S.
Lian
, “
The effect of phase angle and wing spacing on tandem flapping wings
,”
Acta Mech. Sin.
28
,
1557
(
2012
).
9.
B. M.
Boschitsch
,
P. A.
Dewey
, and
A. J.
Smits
, “
Propulsive performance of unsteady tandem hydrofoils in an in-line configuration
,”
Phys. Fluids
26
,
051901
(
2014
).
10.
N.
Gravish
,
J. M.
Peters
,
S. A.
Combes
, and
R. J.
Wood
, “
Collective flow enhancement by tandem flapping wings
,”
Phys. Rev. Lett.
115
,
188101
(
2015
).
11.
C. M.
Xie
and
W. X.
Huang
, “
Vortex interactions between forewing and hindwing of dragonfly in hovering flight
,”
Theor. Appl. Mech. Lett.
5
,
24
(
2015
).
12.
K. B.
Lua
,
H.
Lu
,
X.
Zhang
,
T.
Lim
, and
K.
Yeo
, “
Aerodynamics of two-dimensional flapping wings in tandem configuration
,”
Phys. Fluids
28
,
121901
(
2016
).
13.
H.
Nagai
,
K.
Fujita
, and
M.
Murozono
, “
Experimental study on forewing-hindwing phasing in hovering and forward flapping fight
,”
AIAA J.
57
,
3779
(
2019
).
14.
P.
Han
,
Y.
Pan
,
G.
Liu
, and
H.
Dong
, “
Propulsive performance and vortex wakes of multiple tandem foils pitching in-line
,”
J. Fluid Struct.
108
,
103422
(
2022
).
15.
V.
Joshi
and
R. C.
Mysa
, “
Mechanism of wake-induced flow dynamics in tandem flapping foils: Effect of the chord and gap ratios on propulsion
,”
Phys. Fluids
33
,
087104
(
2021
).
16.
J.
Wu
,
G.
Li
,
L.
Chen
, and
Y.
Zhang
, “
Unsteady aerodynamic performance of a tandem flapping-fixed airfoil configuration at low Reynolds number
,”
Phys Fluids
34
,
111907
(
2022
).
17.
L.
Chen
,
W.
Sun
, and
Y. Q.
Wang
, “
Effects of flapping deviation on the hovering performance of tandem pitching-plunging foils
,”
Comput. Fluids
250
,
105708
(
2023
).
18.
P. K.
Swain
,
A. K.
Barik
,
S. P.
Dora
, and
R.
Resapu
, “
The propulsion of tandem flapping foil following fishtailed flapping trajectory
,”
Phys. Fluids
34
,
123609
(
2022
).
19.
Z.
Chen
,
X.
Li
, and
L.
Chen
, “
Enhanced performance of tandem plunging airfoils with an asymmetric pitching motion
,”
Phys. Fluids
34
,
011910
(
2022
).
20.
G.
Wang
,
B. F.
Ng
,
Z. W.
Teo
,
K. B.
Lua
, and
Y.
Bao
, “
Performance augmentation mechanism of tandem flapping foils with stroke time-asymmetry
,”
Aerosp. Sci. Technol.
117
,
106939
(
2021
).
21.
G.
Luo
and
M.
Sun
, “
The effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings
,”
Acta Mech. Sin.
21
,
531
(
2005
).
22.
S. Z.
Wang
,
X.
Zhang
,
G. W.
He
, and
T. S.
Liu
, “
Lift enhancement by dynamically changing wingspan in forward flapping flight
,”
Phys. Fluids
26
,
061903
(
2014
).
23.
N.
Phillips
,
K.
Knowles
, and
R. J.
Bomphrey
, “
The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing
,”
Bioinspiration Biomimetics
10
,
056020
(
2015
).
24.
A.
Shahzad
,
F.-B.
Tian
,
J.
Young
, and
J. C.
Lai
, “
Effects of wing shape, aspect ratio and deviation angle on aerodynamic performance of flapping wings in hover
,”
Phys. Fluids
28
,
111901
(
2016
).
25.
S. S.
Bhat
,
J.
Zhao
,
J.
Sheridan
,
K.
Hourigan
, and
M. C.
Thompson
, “
Aspect ratio studies on insect wings
,”
Phys. Fluids
31
,
121301
(
2019
).
26.
R. R.
Harbig
,
J.
Sheridan
, and
M. C.
Thompson
, “
The role of advance ratio and aspect ratio in determining leading-edge vortex stability for flapping flight
,”
J. Fluid Mech.
751
,
71
(
2014
).
27.
J.-S.
Han
,
J. W.
Chang
, and
J.-H.
Han
, “
The advance ratio effect on the lift augmentations of an insect-like flapping wing in forward flight
,”
J. Fluid Mech.
808
,
485
(
2016
).
28.
D. L.
Altshuler
,
W. B.
Dickson
,
J. T.
Vance
,
S. P.
Roberts
, and
M. H.
Dickinson
, “
Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight
,”
Proc. Natl. Acad. Sci.
102
,
18213
(
2005
).
29.
R. J.
Bomphrey
,
T.
Nakata
,
N.
Phillips
, and
S. M.
Walker
, “
Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight
,”
Nature
544
,
92
(
2017
).
30.
L. G.
Liu
,
G.
Du
, and
M.
Sun
, “
Aerodynamic-force production mechanisms in hovering mosquitoes
,”
J. Fluid Mech.
898
,
A19
(
2020
).
31.
D.
Lentink
and
M. H.
Dickinson
, “
Biofluiddynamic scaling of flapping, spinning and translating fins and wings
,”
J. Exp. Biol.
212
,
2691
(
2009
).
32.
X.
Meng
,
Z.
Chen
,
Y.
Zhang
, and
G.
Chen
, “
Aerodynamic performance and flow mechanism of multi-flapping wings with different spatial arrangements
,”
Phys. Fluids
34
,
021907
(
2022
).
33.
L.
Chen
,
J.
Wu
,
C.
Zhou
,
S.-J.
Hsu
, and
B.
Cheng
, “
Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number
,”
Phys. Fluids
30
,
051903
(
2018
).
34.
Y. Z.
Lyu
,
H. J.
Zhu
, and
M.
Sun
, “
Aerodynamic forces and vortical structures of a flapping wing at very low Reynolds numbers
,”
Phys. Fluids
31
,
041901
(
2019
).
35.
R. R.
Harbig
,
J.
Sheridan
, and
M. C.
Thompson
, “
Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms
,”
J. Fluid Mech.
717
,
166
(
2013
).
36.
C.
Li
,
H.
Dong
, and
B.
Cheng
, “
Tip vortices formation and evolution of rotating wings at low Reynolds numbers
,”
Phys. Fluids
32
,
021905
(
2020
).
37.
Y.
Liu
and
M.
Sun
, “
Wing kinematics measurement and aerodynamics of hovering droneflies
,”
J. Exp. Biol.
211
,
2014
2025
(
2008
).
38.
X.
Meng
,
Y.
Zhang
, and
G.
Chen
, “
Ceiling effects on the aerodynamics of a flapping wing with advance ratio
,”
Phys. Fluids
32
,
021904
(
2020
).
39.
X. G.
Meng
and
M.
Sun
, “
Wing and body kinematics of forward flight in drone-flies
,”
Bioinspiration Biomimetics
11
,
056002
(
2016
).
40.
S. E.
Rogers
,
D.
Kwak
, and
C.
Kiris
, “
Steady and unsteady solutions of the incompressible Navier-Stokes equations
,”
AIAA J.
29
,
603
(
1991
).
41.
S. E.
Rogers
and
T. H.
Pulliam
, “
Accuracy enhancements for overset grids using a defect correction approach
,”
AIAA J.
94
,
0523
(
1994
).
42.
X.
Meng
, “
Ceiling effects on the aerodynamics of a flapping wing at hovering condition
,”
Phys. Fluids
31
,
051905
(
2019
).
43.
X.
Meng
,
A.
Ghaffar
,
Y.
Zhang
, and
C.
Deng
, “
Very low Reynolds number causes a monotonic force enhancement trend for a three-dimensional hovering wing in ground effect
,”
Bioinspiration Biomimetics
16
,
055006
(
2021
).
44.
A.
Hilgenstock
, “
A fast method for the elliptic generation of three-dimensional grids with full boundary control
,” in
Proceedings of the Second International Conference on Numerical Grid Generation Computational Fluid Mechanics
(
Pineridge Press Ltd
.,
1988
), Vol.
88
, p.
137
.
You do not currently have access to this content.