In this work, the fractional calculus approach is considered for modeling the viscoelastic behavior of human cornea. It is observed that the degree of both elasticity and viscosity is easy to describe in terms of the fractional order parameters in such an approach. Modeling of the human cornea when subjected to simple stress up to the level of 250 MPa by fractional order Maxwell model along with the Fractional Kelvin Voigt Viscoelastic Model is reported. For the Maxwell governing fractional equation, two fractional parameters α and β have been considered to model the stress–strain relationship of the human cornea. The analytical solution of the fractional equation has been obtained for different values of α and β using Laplace transform methods. The effect of the fractional parameter values on the stress-deformation nature has been studied. A comparison between experimental values and calculated values for different fractional order of the Maxwell model equation defines the parameters which depict the real-time stress–strain relationship of the human cornea. It has been observed that the fractional model converges to the classical Maxwell model as a special case for α = β = 1.

1.
N. C.
Congdon
,
A. T.
Broman
,
K.
Bandeen-Roch
,
D.
Grover
, and
H. A.
Quigley
, “
Central corneal thickness and corneal hysteresis associated with glaucoma damage
,”
Am. J. Opthalmol.
141
(
5
),
868
873
(
2006
).
2.
W. J.
Dupes
, Jr.
and
S. E.
Wilson
, “
Biomechanics and wound healing in the cornea
,”
Exp. Eye Res.
83
(
4
),
709
720
(
2006
).
3.
H. A.
Weeber
,
G.
Eckert
,
F.
Soergl
,
C. H.
Meyer
,
W.
Pechhold
, and
R. G.
van der Heijde
, “
Dynamic mechanical properties of human lenses
,”
Exp. Eye Res.
80
(
3
),
425
434
(
2005
).
4.
W.
Hsichun
,
P. L.
Prendiville
,
P. J.
McDonell
, and
W. V.
Chang
, “
An ultrasonic technique for the measurement of the elastic moduli of human cornea
,”
J. Biomech.
29
(
12
),
1633
1636
(
1996
).
5.
M. A.
Lago
,
M. J.
Rupérez
,
F.
Martínez-Martínez
,
C.
Monsserrat
,
E.
Larra
,
J. L.
Güell
, and
C.
Peris-Martínez
, “
A new methodology for in vivo estimation of the elastic constants that characterize the patient-specific biomechanical behavior of the human cornea
,”
J. Biomech.
48
(
1
),
38
43
(
2015
).
6.
L. Y.
Li
and
B.
Tighe
, “
The anisotropic material constitutive models for the human cornea
,”
J. Struct. Biol.
153
(
3
),
223
230
(
2006
).
7.
C.
Whitford
,
H.
Studer
,
C.
Boot
,
K. M.
Meek
, and
A.
Elsheikh
, “
Biomechanical model of the human cornea: Considering shear stiffness and regional variation of collagen anisotropy and density
,”
J. Mech. Behavior Biomed. Mater.
42
,
76
87
(
2015
).
8.
T. J.
Shin
,
R. P.
Vito
,
L. W.
Johnson
, and
B. E.
McCarey
, “
The distribution of strain in the human cornea
,”
J. Biomech.
30
(
5
),
497
503
(
1997
).
9.
G. W.
Nyquist
, “
Rheology of the cornea: Experimental techniques and results
,”
Exp. Eye Res.
7
(
2
),
183
188
(
1968
).
10.
S. L.
Woo
,
A. S.
Kobayashi
,
W. A.
Schlegel
, and
C.
Lawrence
, “
Nonlinear material properties of intact cornea and sclera
,”
Exp. Eye Res.
14
(
1
),
29
39
(
1972
).
11.
T. T.
Andreassen
,
A. H.
Simonsen
, and
H.
Oxlund
, “
Biomechanical properties of keratoconous and normal corneas
,”
Exp. Eye Res.
31
(
4
),
435
441
(
1980
).
12.
B.
Jue
and
D. M.
Maurice
, “
The mechanical properties of the rabbit and human cornea
,”
J. Biomech.
19
(
10
),
847
853
(
1986
).
13.
D. A.
Hoeltzel
,
P.
Altman
,
K.
Buzard
, and
K.
Choe
, “
Strip extensiometry for comparison of the mechanical response of bovine, rabbit and human corneas
,”
ASME J. Biomech. Eng.
114
(
2
),
202
215
(
1992
).
14.
J. O.
Hjortdal
, “
Regional elastic performance of the human cornea
,”
J. Biomech.
29
(
7
),
931
942
(
1996
).
15.
J.
Kampmeier
,
B.
Radt
,
R.
Birngruber
, and
R.
Brinkmann
, “
Thermal and biomechanical parameters of porcine cornea
,”
Cornea
19
(
3
),
355
363
(
2000
).
16.
G.
Wollensak
,
E.
Spoerl
, and
T.
Seiler
, “
Strain-stress measurements of human and porcine corneas after riboflavin-ultraviolet-a-induced cross linking
,”
J. Cataract Refractive Surg.
29
(
9
),
1780
1785
(
2003
).
17.
B. L.
Boyce
,
R. E.
Jones
,
T. D.
Nguyen
, and
J. M.
Grazier
, “
Stress controlled viscoelastic tensile response of bovine cornea
,”
J. Biomech.
40
(
11
),
2367
2376
(
2007
).
18.
D. M.
Maurice
, “
The structure and transparency of the cornea
,”
J. Physiol.
136
(
2
),
263
286
(
1957
).
19.
T. D.
Nguyen
,
R. E.
Jones
, and
B. L.
Boyce
, “
A nonlinear anisotropic viscoelastic model for the tensile behavior of the corneal stroma
,”
J. Biomech. Eng.
130
(
4
),
041020
(
2008
).
20.
U.
Eiichi
,
O.
Shigeaki
,
K.
Joju
,
A.
Koki
, and
T. K.
Lech
, “
Simulation model of an eyeball based on finite element analysis on a supercomputer
,”
Br. J. Opthalmol.
83
,
1106
1111
(
1999
).
21.
T. R.
Friberg
and
J. W.
Lace
, “
A comparison of the elastic properties of human choroid and sclera
,”
Exp. Eye Res.
47
,
429
436
(
1988
).
22.
T.
Hayat
,
S.
Nadeem
, and
S.
Asghar
, “
Periodic unidirectional flows of a viscoelastic fluid with the fractional Maxwell model
,”
Appl. Math. Comput.
151
,
153
161
(
2004
).
23.
D.
Mandal
,
H.
Chattopadhyay
,
A.
Karmakar
, and
K.
Halder
, “
Finite element approach towards impact analysis on biomechanical nature of cornea
,”
Biomed. Res.
29
(
12
),
2465
2470
(
2018
).
24.
D.
Tripathi
,
S. K.
Pandey
, and
S.
Das
, “
Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel
,”
Appl. Math. Comput.
215
,
3645
3654
(
2010
).
25.
J.
Bayat
,
H.
Emdad
, and
O.
Abouali
, “
A mechanical model of partially liquefied vitreous dynamics induced by saccadic eye movement within a realistic shape of vitreous cavity
,”
Phys. Fluids
34
(
2
),
021905
(
2022
).
26.
L.
Li
and
R. J.
Braun
, “
A model for the human tear film with heating from within the eye
,”
Phys. Fluids
24
(
6
),
062103
(
2012
).
27.
L.
Li
,
R. J.
Braun
,
K. L.
Maki
,
W. D.
Henshaw
, and
K.-S.
PE
, “
Tear film dynamics with evaporation, wetting, and time-dependent flux boundary condition on an eye-shaped domain
,”
Phys. Fluids
26
(
5
),
052101
(
2014
).
28.
D.
Roy
,
M.
Sophia
,
A.
Rasheed
,
P.
Kabi
,
A.
Sinha Roy
,
R.
Shetty
, and
S.
Basu
, “
Fluid dynamics of droplet generation from corneal tear film during non-contact tonometry in the context of pathogen transmission
,”
Phys. Fluids
33
,
092109
(
2021
).
29.
Q.
Zhou
,
X.
Shang
,
X.
Chen
,
Y.
Chen
, and
G.
Hu
, “
Aerosol generation from tear film during non-contact tonometer measurement
,”
Phys. Fluids
34
,
082114
(
2022
).
30.
Y. C.
Chen
,
C. J.
Jiang
,
T. H.
Yang
, and
C. C.
Sun
, “
Development of a human eye model incorporated with intraocular scattering for visual performance assessment
,”
J. Biomed. Opt.
17
(
7
),
075009
(
2012
).
31.
H. G.
Dianne
,
J. R.
Cynthia
,
S. L.
Alan
, and
A. W.
Paul
, “
A viscoelastic biomechanical model of the cornea describing the effects of viscosity and elasticity on hysteresis
,”
Invest. Ophthalmol. Visual Sci.
49
,
3919
3926
(
2008
).
32.
W.
Okrasiński
and
Ł.
Płociniczak
, “
A nonlinear mathematical model of the corneal shape
,”
Nonlinear Anal.
13
,
1498
1505
(
2012
).
33.
G. W. S.
Blair
, “
The role of psychophysics in rheology
,”
J. Colloid Sci.
2
(
1
),
21
33
(
1947
).
34.
Y.
Yin
and
K. Q.
Zhu
, “
Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model
,”
Appl. Math. Comput.
173
,
231
242
(
2006
).
35.
V. S.
Erturk
,
A.
Ahmadkhanlu
,
P.
Kumar
, and
V.
Govindaraj
, “
Some novel mathematical analysis on a corneal shape model by using Caputo fractional derivative
,”
Optik
261
,
169086
(
2022
).
36.
J.
Guo
,
Y.
Yin
, and
G.
Peng
, “
Fractional-order viscoelastic model of musculoskeletal tissues: Correlation with fractals
,”
Proc. R. Soc. A
477
,
20200990
(
2021
).
37.
J.
Guo
,
Y.
Yin
,
X.
Hu
, and
G.
Ren
, “
Self-similar network model for fractional-order neuronal spiking: Implications of dendritic spine functions
,”
Nonlinear Dyn.
100
,
921
935
(
2020
).
You do not currently have access to this content.