This experimental study reveals a striking nonlinear-physics phenomenon of fundamental and practical interest—changing conditions at the interface of two swirling immiscible fluids filling a vertical cylindrical container. To this end, we use a new measurement technique significantly advanced compared with prior studies. The rotating bottom disk drives a steady axisymmetric flow of both fluids. The lower fluid makes the centrifugal circulation (CC): It spirals on toroid surfaces going to the periphery near the bottom and going back to the axis near the interface. At a slow rotation (Re = 100), the upper fluid makes the anti-centrifugal circulation. As the rotation intensifies (Re = 175), the upper-fluid flow reverses into CC near the interface-axis intersection. For strong swirl (Re = 500), the CC occurs at the entire interface. In prior studies, the spatial resolution (1 mm) was insufficient to resolve the near-interface velocity field. Here, we use the advanced (light field) measurement technique, which has significantly better resolution (0.14 mm) and clearly shows that the radial velocity at the interface is negative for small Re and becomes zero for large Re. During these metamorphoses, the topology of the lower-fluid flow remains invariant, the interface has no visible deformation, and the flow is steady and axisymmetric.

1.
Y. A.
Ramazanov
,
V. I.
Kislykh
,
I. P.
Kosyuk
,
N. V.
Bakuleva
, and
V. V.
Shchurikhina
,
New Aspects of Biotechnology and Medicine
(
Nova Science Publishers
,
2007
), pp.
87
91
.
2.
K. Y. S.
Liow
,
G. A.
Thouas
,
B. T.
Tan
,
M. C.
Thompson
, and
K.
Hourigan
, in
13th International Conference on Biomedical Engineering
(
Springer
,
Berlin/Heidelberg
,
2008
), pp.
1672
1675
.
3.
K. Y. S.
Liow
,
B. T.
Tan
,
G. A.
Thouas
, and
M. C.
Thompson
, “
CFD modeling of the steady-state momentum and oxygen transport in a bioreactor that is driven by an aerial rotating disk
,”
Mod. Phys. Lett. B
23
,
121
(
2009
).
4.
B. R.
Sharifullin
,
S. G.
Skripkin
,
I. V.
Naumov
,
Z.
Zuo
,
B.
Li
, and
V. N.
Shtern
, “
Intense vortex motion in a two-phase bioreactor
,”
Water
15
,
94
(
2022
).
5.
D.
lo Jacono
,
M.
Nazarinia
, and
M.
Brøns
, “
Experimental vortex breakdown topology in a cylinder with a free surface
,”
Phys. Fluids
21
,
111704
(
2009
).
6.
S.
Fujimoto
and
Y.
Takeda
, “
Topology changes of the interface between two immiscible liquid layers by a rotating lid
,”
Phys. Rev. E
80
,
015304
(
2009
).
7.
J.-C.
Tsai
,
C.-Y.
Tao
,
Y.-C.
Sun
,
C.-Y.
Lai
,
K.-H.
Huang
,
W.-T.
Juan
, and
J.-R.
Huang
, “
Vortex-induced morphology on a two-fluid interface and the transitions
,”
Phys. Rev. E
92
,
031002
(
2015
).
8.
I. V.
Naumov
,
V. G.
Glavny
,
B. R.
Sharifullin
, and
V. N.
Shtern
, “
Formation of a thin circulation layer in a two-fluid rotating flow
,”
Phys. Rev. Fluids
4
,
054702
(
2019
).
9.
I. V.
Naumov
,
B. R.
Sharifullin
, and
V. N.
Shtern
, “
Vortex breakdown in the lower fluid of two-fluid swirling flow
,”
Phys. Fluids
32
,
014101
(
2020
).
10.
I. V.
Naumov
,
B. R.
Sharifullin
,
M. A.
Tsoy
, and
V. N.
Shtern
, “
Dual vortex breakdown in a two-fluid confined flow
,”
Phys. Fluids
32
,
061706
(
2020
).
11.
L.
Carrión
,
I. V.
Naumov
,
B. R.
Sharifullin
,
M. A.
Herrada
, and
V. N.
Shtern
, “
Formation of dual vortex breakdown in a two-fluid confined flow
,”
Phys. Fluids
32
,
104107
(
2020
).
12.
I. V.
Naumov
,
M. A.
Herrada
,
B. R.
Sharifullin
, and
V. N.
Shtern
, “
Hysteretic growth and decay of a waterspout column
,”
Phys. Rev. Fluids
3
,
024701
(
2018
).
13.
I. V.
Naumov
,
S. G.
Skripkin
,
G. E.
Gusev
, and
V. N.
Shtern
, “
Hysteresis in a two-liquid whirlpool
,”
Phys. Fluids
34
,
032108
(
2022
).
14.
I. V.
Naumov
,
M. A.
Herrada
,
B. R.
Sharifullin
, and
V. N.
Shtern
, “
Slip at the interface of a two-fluid swirling flow
,”
Phys. Fluids
30
,
074101
(
2018
).
15.
I. V.
Naumov
,
S. G.
Skripkin
, and
V. N.
Shtern
, “
Counterflow slip in a two-fluid whirlpool
,”
Phys. Fluids
33
,
061705
(
2021
).
16.
I. V.
Naumov
,
B. R.
Sharifullin
,
A. Y.
Kravtsova
, and
V. N.
Shtern
, “
Velocity jumps and the Moffatt eddy in two-fluid swirling flows
,”
Exp. Therm. Fluid Sci.
116
,
110116
(
2020
).
17.
B. R.
Sharifullin
and
I. V.
Naumov
, “
Angular momentum transfer across the interface of two immiscible liquids
,”
Thermophys. Aeromech.
28
,
65
76
(
2021
).
18.
T. W.
Fahringer
,
K. P.
Lynch
, and
B. S.
Thurow
, “
Volumetric particle image velocimetry with a single plenoptic camera
,”
Meas. Sci. Technol.
26
,
115201
(
2015
).
19.
A.
Kvon
,
S.
Kharlamov
,
A.
Bobylev
, and
V.
Guzanov
, “
Investigation of the flow structure in three-dimensional waves on falling liquid films using light field camera
,”
Exp. Therm. Fluid Sci.
132
,
110553
(
2022
).
20.
A.
Lumsdaine
, “
Focused plenoptic camera and rendering
,”
Proc. SPIE
021106
,
1
11
(
2010
).
21.
S. G.
Skripkin
,
B. R.
Sharifullin
,
I. V.
Naumov
, and
V. N.
Shtern
, “
Dual vortex breakdown in a two-fluid whirlpool
,”
Sci. Rep.
11
,
23085
(
2021
).
22.
A.
Seredkin
and
M.
Tokarev
, “
Image processing algorithms for a light-field camera and their application for optical flow diagnostics
,”
Num. Meth. Program.
17
,
224
233
(
2016
).
23.
A.
Faugaret
,
Y.
Duguet
,
Y.
Fraigneau
, and
L. M.
Witkowski
, “
A simple model for arbitrary pollution effects on rotating free-surface flows
,”
J. Fluid Mech.
935
,
A2
(
2022
).
24.
C.
Li
,
J.
Huang
,
W.
Fu
,
G.
Song
,
Y.
Chang
, and
Z.
Song
, “
Internal vortex breakdowns with stair-step change in rotating flows
,”
Phys. Fluids
34
,
093613
(
2022
).
25.
M.
Sharma
and
A.
Sameen
, “
Synopsis of Vogel–Escudier flow
,”
Phys. Fluids
33
,
064105
(
2021
).
You do not currently have access to this content.