Mach reflection (MR) is an essential component in the development of the shock theory, as the incident shock curvature is found to have a significant effect on the MR patterns. Curved-shock Mach reflection (CMR) is not yet adequately understood due to the rotational complexity behind curved shocks. Here, CMR in steady, planar/axisymmetric flows is analyzed to supplement the well-studied phenomena caused by oblique-shock Mach reflection (OMR). The solution from the von Neumann's three-shock theory does not fully describe the CMR case. A CMR structure is presented and characterized by an incident shock, reflected shock, Mach stem, and expansion/compression waves over the slipline or occasionally an absence of waves due to pressure equilibrium. On the basis of this CMR structure, an analytical model for predicting the Mach stem in the CMR case is established. The model reduces to the OMR case if the shock curvature is not applicable. Predictions of the Mach stem geometry and shock structure based on the model exhibit better agreement with the numerical results than predictions using previous models. It is found that the circumferential shock curvature plays a key role in the axisymmetric doubly curved CMR case, which results in a different outcome from the planar case.

1.
W.
Scheid
,
H.
Müller
, and
W.
Greiner
, “
Nuclear shock waves in heavy-ion collisions
,”
Phys. Rev. Lett.
32
,
741
745
(
1974
).
2.
D. D.
Hickstein
,
F.
Dollar
,
J. A.
Gaffney
,
M. E.
Foord
,
G. M.
Petrov
,
B. B.
Palm
,
K. E.
Keister
,
J. L.
Ellis
,
C.
Ding
, et al, “
Observation and control of shock waves in individual nanoplasmas
,”
Phys. Rev. Lett.
112
,
115004
(
2014
).
3.
J. Z.
Maurice
and
J. D.
Hoffman
,
Gas Dynamics
(
John Wiley & Sons
,
1976
).
4.
A.
Rikanati
,
O.
Sadot
,
G.
Ben-Dor
,
D.
Shvarts
,
T.
Kuribayashi
, and
K.
Takayama
, “
Shock-wave Mach-reflection slip-stream instability: A secondary small-scale turbulent mixing phenomenon
,”
Phys. Rev. Lett.
96
,
174503
(
2006
).
5.
E.
Mach
, “
Uber den verlauf von funkenwellen in der ebene und im raume
,”
Sitzungsbr. Akad. Wiss. Wien
78
,
819
838
(
1878
).
6.
J.
von Neumann
, “
Oblique reflection of shock waves
,” in
John von Neumann Collected Works
(
Pergamon Press
,
1943
).
7.
H. G.
Hornung
and
M. L.
Robinson
, “
Transition from regular to Mach reflection of shock waves Part 2. The steady-flow criterion
,”
J. Fluid Mech.
123
,
155
164
(
1982
).
8.
C. A.
Mouton
and
H. G.
Hornung
, “
Experiments on the mechanism of inducing transition between regular and Mach reflection
,”
Phys. Fluids
20
,
126103
(
2008
).
9.
Y.-C.
Hu
,
W.-F.
Zhou
,
Z.-G.
Tang
,
Y.-G.
Yang
, and
Z.-H.
Qin
, “
Mechanism of hysteresis in shock wave reflection
,”
Phys. Rev. E
103
,
023103
(
2021
).
10.
H.
Wang
,
Z.
Zhai
,
X.
Luo
,
J.
Yang
, and
X.
Lu
, “
A specially curved wedge for eliminating wedge angle effect in unsteady shock reflection
,”
Phys. Fluids
29
,
086103
(
2017
).
11.
H.
Wang
,
Z.
Zhai
, and
X.
Luo
, “
Prediction of triple point trajectory on two-dimensional unsteady shock reflection over single surfaces
,”
J. Fluid Mech.
947
,
A42
(
2022
).
12.
L.
Su
,
F.
Wen
,
Z.
Li
,
C.
Wan
,
J.
Han
,
S.
Wang
, and
Z.
Wang
, “
Dynamics study of shock wave intersection under high-frequency sine oscillation incoming flow
,”
Phys. Fluids
34
,
116107
(
2022
).
13.
Y.
Burtschell
,
D.
Zeitoun
, and
G.
Ben-Dor
, “
Steady shock wave reflections in thermochemical nonequilibrium flows
,”
Shock Waves
11
,
15
21
(
2001
).
14.
H.
Li
,
A.
Chpoun
, and
G.
Ben-Dor
, “
Analytical and experimental investigations of the reflection of asymmetric shock waves in steady flows
,”
J. Fluid Mech.
390
,
25
43
(
1999
).
15.
Y.
Tao
,
W.
Liu
,
X.
Fan
,
B.
Xiong
,
J.
Yu
, and
M.
Sun
, “
A study of the asymmetric shock reflection configurations in steady flows
,”
J. Fluid Mech.
825
,
1
15
(
2017
).
16.
J.
Lin
,
C. Y.
Bai
, and
Z. N.
Wu
, “
Study of asymmetrical shock wave reflection in steady supersonic flow
,”
J. Fluid Mech.
864
,
848
875
(
2019
).
17.
S.
Roy
and
R.
Gopalapillai
, “
An analytical model for asymmetric Mach reflection configuration in steady flows
,”
J. Fluid Mech.
863
,
242
268
(
2019
).
18.
K. G.
Guderley
and
E. V.
Laitone
, “
The theory of transonic flow
,”
J. Appl. Mech.
30
,
319
(
1963
).
19.
B.
Gao
and
Z. N.
Wu
, “
A study of the flow structure for Mach reflection in steady supersonic flow
,”
J. Fluid Mech.
656
,
29
50
(
2010
).
20.
H.
Li
and
G.
Ben-Dor
, “
A parametric study of Mach reflection in steady flows
,”
J. Fluid Mech.
341
,
101
125
(
1997
).
21.
L. H.
Tan
,
Y. X.
Ren
, and
Z. N.
Wu
, “
Analytical and numerical study of the near flow field and shape of the Mach stem in steady flows
,”
J. Fluid Mech.
546
,
341
362
(
2006
).
22.
S.
Mölder
, “
Reflection of curved shock waves
,”
Shock Waves
27
,
699
720
(
2017
).
23.
L. H.
Tan
, “
On the shape of shock waves in steady planar and axisymmetical Mach reflections
,” Ph.D. thesis (
Tsinghua University
,
2007
).
24.
S.
Mölder
, “
Curved shock theory
,”
Shock Waves
26
,
337
353
(
2016
).
25.
G.
Emanuel
, “
Analytical extension of curved shock theory
,”
Shock Waves
28
,
417
425
(
2018
).
26.
C. G.
Shi
,
W. Q.
Han
,
R.
Deiterding
,
C. X.
Zhu
, and
Y. C.
You
, “
Second-order curved shock theory
,”
J. Fluid Mech.
891
,
A21
(
2020
).
27.
C.
Shi
,
C.
Zhu
,
Y.
You
, and
G.
Zhu
, “
Method of curved-shock characteristics with application to inverse design of supersonic flowfields
,”
J. Fluid Mech.
920
,
A36
(
2021
).
You do not currently have access to this content.