Additive manufacturing techniques involve various steps and processes to create intricate shapes using edible or non-edible materials. This unique technology relies upon layer-by-layer operation to create an object that is pre-designed and coded with the help of specific software. The major challenges of three-dimensional printing that heavily depend on the material properties and machine capabilities are the ability to get a designed shape with high precision and accuracy, printing speed, and scalability. A critical review discussing the technology implementation from the perspectives of the food industry trends is of great interest, especially to industry professionals and academia. Adapting the technology in the food sector requires a critical view to overcoming technical barriers, which account for the food industry needs and current global challenges. In this regard, the relevant process parameters, the perspectives on food processing and engineering, and the nutritional aspects and culinary practices are considered. This review article discusses the current progress of additive manufacturing of food, the perspectives related to the food industry, and rheology as a tool where nonlinear behaviors are also included to unlock the analysis requirements for specific food groups for broader applications. The rheological methods for the characterization of food inks used in additive manufacturing technologies are critically reviewed, and key parameters are proposed.

1.
A.
Derossi
,
M.
Paolillo
,
P.
Verboven
,
B.
Nicolai
, and
C.
Severini
, “
Extending 3D food printing application: Apple tissue microstructure as a digital model to create innovative cereal-based snacks
,”
J. Food Eng.
316
,
110845
(
2022
).
2.
M. O.
Oral
,
A.
Derossi
,
R.
Caporizzi
, and
C.
Severini
, “
Analyzing the most promising innovations in food printing. Programmable food texture and 4D foods
,”
Future Foods
4
,
100093
(
2021
).
3.
E.
Pulatsu
,
J. W.
Su
,
J.
Lin
, and
M.
Lin
, “
Factors affecting 3D printing and post-processing capacity of cookie dough
,”
Innovative Food Sci. Emerging Technol.
61
,
102316
(
2020
).
4.
C.
Pinna
,
L.
Ramundo
,
F. G.
Sisca
,
C. M.
Angioletti
,
M.
Taisch
, and
S.
Terzi
, “Additive manufacturing applications within food industry: An actual overview and future opportunities,” in
Proceedings of the Summer School Francesco Turco 13–15 September
(AIDI-Italian Association of Industrial Operations Professors,
2016
), pp.
18
24
.
5.
L. J.
Tan
,
W.
Zhu
, and
K.
Zhou
, “
Recent progress on polymer materials for additive manufacturing
,”
Adv. Funct. Mater.
30
,
2003062
(
2020
).
6.
B. M.
Fasogbon
and
O. A.
Adebo
, “
A bibliometric analysis of 3D food printing research: A global and African perspective
,”
Future Foods
6
,
100175
(
2022
).
7.
M.
Anas
,
M. A.
Sami
,
Z.
Siddiqui
,
K.
Khatoon
,
M. T.
Zeyad
, and
A.
Malik
, “Impact of climate change on the incidence and transfer of food- and water-borne diseases,” in Microbiomes and the Global Climate Change (
Springer
,
2021
), pp.
123
144
.
8.
D. M.
Tendall
,
J.
Joerin
,
B.
Kopainsky
,
P.
Edwards
,
A.
Shreck
,
Q. B.
Le
,
P.
Kruetli
,
M.
Grant
, and
J.
Six
, “
Food system resilience: Defining the concept
,”
Global Food Secur.
6
,
17
23
(
2015
).
9.
E.
Pulatsu
and
M.
Lin
, “A review on customizing edible food materials into 3D printable inks: Approaches and strategies,”
Trends Food Sci. Technol.
107
,
68
(
2021
).
10.
E.
Pulatsu
,
J.-W.
Su
,
S. M.
Kenderes
,
J.
Lin
,
B.
Vardhanabhuti
, and
M.
Lin
, “Restructuring cookie dough with 3D printing: Relationships between the mechanical properties, baking conditions, and structural changes,”
J. Food Eng.
319
,
110911
(
2022
).
11.
M.
Shahbazi
and
H.
Jäger
, “
Current status in the utilization of biobased polymers for 3D printing process: A systematic review of the materials, processes, and challenges
,”
ACS Appl. Bio Mater.
4
,
325
(
2021
).
12.
N.
Jonkers
,
J. A. W.
van Dommelen
, and
M. G. D.
Geers
, “
Selective laser sintered food: A unit cell approach to design mechanical properties
,”
J. Food Eng.
335
,
111183
(
2022
).
13.
J.
Sun
,
Z.
Peng
,
W.
Zhou
,
J. Y. H.
Fuh
,
G. S.
Hong
, and
A.
Chiu
, “
A review on 3D printing for customized food fabrication
,”
Procedia Manuf.
1
,
308
(
2015
).
14.
A.
Derossi
,
B.
Bhandari
,
K.
Bommel
,
M.
Noort
, and
C.
Severini
, “
Could 3D food printing help to improve the food supply chain resilience against disruptions such as caused by pandemic crises?
Int. J. Food Sci. Technol.
56
,
4338
(
2021
).
15.
J. D.
Blutinger
,
A.
Tsai
,
E.
Storvick
,
G.
Seymour
,
E.
Liu
,
N.
Samarelli
,
S.
Karthik
,
Y.
Meijers
, and
H.
Lipson
, “
Precision cooking for printed foods via multiwavelength lasers
,”
NPJ Sci. Food.
5
,
24
(
2021
).
16.
M. Q.
Zafar
and
H.
Zhao
, “
4D Printing: Future insight in additive manufacturing
,”
Met. Mater. Int.
26
,
564
(
2020
).
17.
Z. X.
Khoo
,
J. E. M.
Teoh
,
Y.
Liu
,
C. K.
Chua
,
S.
Yang
,
J.
An
,
K. F.
Leong
, and
W. Y.
Yeong
, “
3D printing of smart materials: A review on recent progresses in 4D printing
,”
Virtual Phys. Prototyping
10
,
103
(
2015
).
18.
J. W.
Su
,
W.
Gao
,
K.
Trinh
,
S. M.
Kenderes
,
E.
Tekin Pulatsu
,
C.
Zhang
,
A.
Whittington
,
M.
Lin
, and
J.
Lin
, “4D printing of polyurethane paint-based composites,”
Int. J. Smart Nano Mater.
10
,
237
(
2019
).
19.
S.
Joshi
,
K.
Rawat
,
C.
Karunakaran
,
V.
Rajamohan
,
A. T.
Mathew
,
K.
Koziol
,
V.
Kumar Thakur
, and
A. S. S.
Balan
, “4D printing of materials for the future: Opportunities and challenges,”
Appl. Mater. Today
18
,
100490
(
2020
).
20.
X.
Teng
,
M.
Zhang
, and
A. S.
Mujumdar
, “4D printing: Recent advances and proposals in the food sector,”
Trends Food Sci. Technol.
110
,
349
(
2021
).
21.
P.
Fischer
and
E. J.
Windhab
, “Rheology of food materials,”
Curr. Opin. Colloid Interface Sci.
16
,
36
(
2011
).
22.
Y.
Cheng
,
Y.
Fu
,
L.
Ma
,
P. L.
Yap
,
D.
Losic
,
H.
Wang
, and
Y.
Zhang
, “
Rheology of edible food inks from 2D/3D/4D printing, and its role in future 5D/6D printing
,”
Food Hydrocolloids
132
,
107855
(
2022
).
23.
A.
Baiano
, “
3D printed foods: A comprehensive review on technologies, nutritional value, safety, consumer attitude, regulatory framework, and economic and sustainability issues
,”
Food Rev. Int.
38
,
986
1016
(
2020
).
24.
F. C.
Godoi
,
S.
Prakash
, and
B. R.
Bhandari
, “
3D printing technologies applied for food design: Status and prospects
,”
J. Food Eng.
179
,
44
(
2016
).
25.
J.
Sun
,
Z.
Peng
,
L.
Yan
,
J. Y. H.
Fuh
, and
G. S.
Hong
, “
3D food printing an innovative way of mass customization in food fabrication
,”
Int. J. Bioprint.
1
,
27
(
2015
).
26.
P.
Pradel
,
R.
Bibb
,
Z.
Zhu
, and
J.
Moultrie
, “
Industrializing additive manufacturing
,” in
Proceedings of Additive Manufacturing in Products and Applications (AMPA2017)
(
Springer International Publishing
,
Cham
,
2018
), pp.
24
33
.
27.
I.
Gibson
,
D.
Rosen
,
B.
Stucker
, and
M.
Khorasani
,
Additive Manufacturing Technologies
(
Springer International Publishing
,
Cham
,
2021
), pp.
171
201
.
28.
M.
Salmi
,
I. F.
Ituarte
,
S.
Chekurov
, and
E.
Huotilainen
, “
Effect of build orientation in 3D printing production for material extrusion, material jetting, binder jetting, sheet object lamination, vat photopolymerisation, and powder bed fusion
,”
Int. J. Collab. Enterp.
5
,
218
(
2016
).
29.
S.
Vadodaria
and
T.
Mills
, “
Jetting-based 3D printing of edible materials
,”
Food Hydrocolloids
106
,
105857
(
2020
).
30.
I.
Gibson
,
D.
Rosen
,
B.
Stucker
, and
M.
Khorasani
,
Additive Manufacturing Technologies
(
Springer International Publishing
,
Cham
,
2021
), pp.
203
235
.
31.
W.
Zhou
,
D.
Loney
,
F. L.
Degertekin
,
D. W.
Rosen
, and
A. G.
Fedorov
, “What controls dynamics of droplet shape evolution upon impingement on a solid surface?,”
AIChE J.
59
,
3071
(
2013
).
32.
R. H.
Yang
,
Y.
He
,
C.
Tuck
,
R.
Wildman
,
I.
Ashcroft
, and
P.
Dickens
, “High viscosity jetting system for 3D reactive inkjet printing,” presented at the 2013 International Solid Freeform Fabrication Symposium, 12–14 August 2013, p.
505
.
33.
F.
Pallottino
,
L.
Hakola
,
C.
Costa
,
F.
Antonucci
,
S.
Figorilli
,
A.
Seisto
, and
P.
Menesatti
, “
Printing on food or food printing: A review
,”
Food Bioprocess Technol.
9
,
725
(
2016
).
34.
S.
Holland
,
T.
Foster
,
W.
MacNaughtan
, and
C.
Tuck
, “
Design and characterisation of food grade powders and inks for microstructure control using 3D printing
,”
J. Food Eng.
220
,
12
19
(
2018
).
35.
K.
Takagishi
,
Y.
Suzuki
, and
S.
Umezu
, “
The high precision drawing method of chocolate utilizing electrostatic ink-jet printer
,”
J. Food Eng.
216
,
138
(
2018
).
36.
D.
Eisenbarth
,
F.
Wirth
,
K.
Spieldiener
, and
K.
Wegener
, “
Industrializing additive manufacturing
,” in
Proceedings of Additive Manufacturing in Products and Applications (AMPA2017)
(
Springer International Publishing
,
Cham
,
2018
), pp.
152
161
.
37.
Y.
Jin
,
Y.
He
,
G.
Xue
, and
J.
Fu
, “
A parallel-based path generation method for fused deposition modeling
,”
Int. J. Adv. Manuf. Technol.
77
,
927
(
2015
).
38.
I.
Gibson
,
D.
Rosen
,
B.
Stucker
, and
M.
Khorasani
,
Additive Manufacturing Technologies
(
Springer International Publishing
,
Cham
,
2021
), pp.
1
21
.
39.
R. H.
Ewoldt
and
C.
Saengow
, “
Designing complex fluids
,”
Annu. Rev. Fluid Mech.
54
,
413
(
2022
).
40.
J.
Ahmed
,
P.
Ptaszek
, and
S.
Basu
,
Food Rheology: Scientific Development and Importance to Food Industry
(
Elsevier Ltd.
,
2017
).
41.
E.
Pulatsu
,
J. W.
Su
,
S. M.
Kenderes
,
J.
Lin
,
B.
Vardhanabhuti
, and
M.
Lin
, “
Effects of ingredients and pre-heating on the printing quality and dimensional stability in 3D printing of cookie dough
,”
J. Food Eng.
294
,
110412
(
2021
).
42.
C. H.
Bi
,
D.
Li
,
L. J.
Wang
,
Y.
Wang
, and
B.
Adhikari
, “
Characterization of non-linear rheological behavior of SPI-FG dispersions using LAOS tests and FT rheology
,”
Carbohydr. Polym.
92
,
1151
(
2013
).
43.
H. S.
Joyner
, “
Nonlinear (large-amplitude oscillatory shear) rheological properties and their impact on food processing and quality
,”
Annu. Rev. Food Sci. Technol.
12
,
591
(
2021
).
44.
M.
Paolillo
,
A.
Derossi
,
K.
van Bommel
,
M.
Noort
, and
C.
Severini
, “
Rheological properties, dispensing force and printing fidelity of starchy-gels modulated by concentration, temperature and resting time
,”
Food Hydrocolloids
117
,
106703
(
2021
).
45.
J. J.
Nijdam
,
D.
LeCorre-Bordes
,
A.
Delvart
, and
B. S.
Schon
, “
A rheological test to assess the ability of food inks to form dimensionally stable 3D food structures
,”
J. Food Eng.
291
,
110235
(
2021
).
46.
H.
Tian
,
K.
Wang
,
H.
Lan
,
Y.
Wang
,
Z.
Hu
, and
L.
Zhao
, “
Effect of hybrid gelator systems of beeswax-carrageenan-xanthan on rheological properties and printability of litchi inks for 3D food printing
,”
Food Hydrocolloids
113
,
106482
(
2021
).
47.
M.
Shahbazi
,
H.
Jäger
, and
R.
Ettelaie
, “
Application of Pickering emulsions in 3D printing of personalized nutrition—Part I: Development of reduced-fat printable casein-based ink
,”
Colloids Surf. A
622
,
126641
(
2021
).
48.
L.
Zheng
,
J.
Liu
,
R.
Liu
,
Y.
Xing
, and
H.
Jiang
, “
3D printing performance of gels from wheat starch, flour and whole meal
,”
Food Chem.
356
,
129546
(
2021
).
49.
S.
Thangalakshmi
,
V. K.
Arora
,
B. P.
Kaur
, and
S.
Malakar
, “Investigation on rice flour and jaggery paste as food material for extrusion-based 3D printing,”
J. Food Process. Preserv.
45
(
4
),
e15375
(
2021
).
50.
M.
Lille
,
A.
Nurmela
,
E.
Nordlund
,
S.
Metsä-Kortelainen
, and
N.
Sozer
, “
Applicability of protein and fiber-rich food materials in extrusion-based 3D printing
,”
J. Food Eng.
220
,
20
(
2018
).
51.
Y.
Cui
,
C.
Li
,
Y.
Guo
,
X.
Liu
,
F.
Zhu
,
Z.
Liu
,
X.
Liu
, and
F.
Yang
, “
Rheological & 3D printing properties of potato starch composite gels
,”
J. Food Eng.
313
,
110756
(
2022
).
52.
F.
Yang
,
M.
Zhang
,
S.
Prakash
, and
Y.
Liu
, “Physical properties of 3D printed baking dough as affected by different compositions,”
Innovative Food Sci. Emerging Technol.
49
,
202
210
(
2018
).
53.
L.
Wang
,
M.
Zhang
,
B.
Bhandari
, and
C.
Yang
, “
Investigation on fish surimi gel as promising food material for 3D printing
,”
J. Food Eng.
220
,
101
(
2018
).
54.
G. H.
Jo
,
W. S.
Lim
,
H. W.
Kim
, and
H. J.
Park
, “
Post-processing and printability evaluation of red ginseng snacks for three-dimensional (3D) printing 3D printing of snacks according to starch type
,”
Food Biosci.
42
,
101094
(
2021
).
55.
M.
Herold
,
S.
Morick
,
O.
Hensel
, and
U.
Grupa
, “Influence of raw meat content on 3D-printing and rheological properties,”
Int. J. Food Stud.
10
(1),
195
202
(
2021
).
56.
S.
Joshi
,
J. K.
Sahu
,
M. A.
Bareen
,
S.
Prakash
,
B.
Bhandari
,
N.
Sharma
, and
S. N.
Naik
, “
Assessment of 3D printability of composite dairy matrix by correlating with its rheological properties
,”
Food Res. Int.
141
,
110111
(
2021
).
57.
X.
Teng
,
M.
Zhang
, and
A. S.
Mujumdar
, “Strategies for controlling over-puffing of 3D-printed potato gel during microwave processing,”
LWT
153
,
112508
(
2022
).
58.
Y.
Huang
,
M.
Zhang
, and
P.
Pattarapon
, “Reducing freeze-thaw drip loss of mixed vegetable gel by 3D printing porosity,”
Innovative Food Sci. Emerging Technol.
75
,
102893
(
2021
).
59.
A.
Dick
,
B.
Bhandari
, and
S.
Prakash
, “
Printability and textural assessment of modified-texture cooked beef pastes for dysphagia patients
,”
Future Foods
3
,
100006
(
2021
).
60.
S.
Hussain
,
V. K.
Arora
, and
S.
Malakar
, “Formulation of protein-enriched 3D printable food matrix and evaluation of textural, rheological characteristics, and printing stability,”
J. Food Process Preserv.
45
,
e15182
(
2021
).
61.
R.
Uribe-Alvarez
,
N.
O'Shea
,
C. P.
Murphy
,
C.
Coleman-Vaughan
, and
T. P.
Guinee
, “Evaluation of rennet-induced gelation under different conditions as a potential method for 3D food printing of dairy-based high-protein formulations,”
Food Hydrocolloids
114
,
106542
(
2021
).
62.
Y.
Liu
,
K.
Wang
, and
P.
Zhou
, “Microscopic structure, viscoelastic behaviour and 3D printing potential of milk protein concentrate-hydrocolloid complex coacervates,”
Int. J. Food Sci. Technol.
57
(7),
4422
4431
(
2022
).
63.
Z.
Zheng
,
M.
Zhang
, and
Z.
Liu
, “Investigation on evaluating the printable height and dimensional stability of food extrusion–based 3D printed foods,”
J. Food Eng.
306
,
110636
(
2021
).
64.
S.
Zhu
,
M. A.
Stieger
,
A. J.
van der Goot
, and
M. A. I.
Schutyser
, “
Extrusion-based 3D printing of food pastes: Correlating rheological properties with printing behaviour
,”
Innovative Food Sci. Emerging Technol.
58
,
102214
(
2019
).
65.
V. F.
Sager
,
M. B.
Munk
,
M. S.
Hansen
,
W. L. P.
Bredie
, and
L.
Ahrné
, “
Formulation of heat-induced whey protein gels for extrusion-based 3D printing
,”
Foods
10
,
8
(
2021
).
66.
D. D.
Kee
, “Yield stress measurement techniques: A review,”
Phys. Fluids
33
,
111301
(
2021
).
67.
I. M.
Cotabarren
,
S.
Cruces
, and
C. A.
Palla
, “
Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures
,”
Food Res. Int.
126
,
108676
(
2019
).
68.
T.
Feng
,
C.
Fan
,
X.
Wang
,
X.
Wang
,
S.
Xia
, and
Q.
Huang
, “
Food-grade Pickering emulsions and high internal phase Pickering emulsions encapsulating cinnamaldehyde based on pea protein-pectin-EGCG complexes for extrusion 3D printing
,”
Food Hydrocolloids
124
,
107265
(
2022
).
69.
E.
Tekin
,
S.
Sahin
, and
G.
Sumnu
, “
Physicochemical, rheological, and sensory properties of low-fat ice cream designed by double emulsions
,”
Eur. J. Lipid Sci. Technol.
119
,
1600505
(
2017
).
70.
S.
Moayedzadeh
,
A. K.
Asl
,
S.
Gunasekaran
, and
A.
Madadlou
, “
Emulsion gels loaded with pancreatic lipase: Preparation from spontaneously made emulsions and assessment of the rheological, microscopic and cargo release properties
,”
Food Res. Int.
156
,
111306
(
2022
).
71.
S.
Sridharan
,
M. B. J.
Meinders
,
L. M.
Sagis
,
J. H.
Bitter
, and
C. V.
Nikiforidis
, “
Jammed emulsions with adhesive pea protein particles for elastoplastic edible 3D printed materials
,”
Adv. Funct. Mater.
31
,
2101749
(
2021
).
72.
S.
Ciccone
,
G.
Skopalik
,
C.
Smart
,
S.
Gezgin
,
D.
Ridland
,
M. C.
Paul
,
M.
del
,
P. N.
Escobar
, and
M.
Tassieri
, “A rheological characterization of synthetic detergent formulations,”
Phys. Fluids
34
,
097109
(
2022
).
73.
J.
Huang
,
S.
Zeng
,
S.
Xiong
, and
Q.
Huang
, “
Steady, dynamic, and creep-recovery rheological properties of myofibrillar protein from grass carp muscle
,”
Food Hydrocolloids
61
,
48
(
2016
).
74.
M.
Kamkar
,
R.
Salehiyan
,
T. B.
Goudoulas
,
M.
Abbasi
,
C.
Saengow
,
E.
Erfanian
,
S.
Sadeghi
,
G.
Natale
,
S. A.
Rogers
,
A. J.
Giacomin
, and
U.
Sundararaj
, “Large amplitude oscillatory shear flow: Microstructural assessment of polymeric systems,”
Prog. Polym. Sci.
132
,
101580
(
2022
).
75.
E.
Erfanian
,
M.
Kamkar
,
D.
Williams
,
Y.
Zamani Keteklahijani
,
R.
Salehiyan
,
S. S.
Ray
,
M.
Arjmand
, and
U.
Sundararaj
, “Dielectrorheology of aspect-ratio-tailored carbon nanotube/polyethylene composites under large deformations: implications for high-temperature dielectrics,”
ACS Appl. Nano Mater.
4
(11),
11493
11504
(
2021
).
76.
Y.
Wang
and
C.
Selomulya
, “
Food rheology applications of large amplitude oscillation shear (LAOS)
,”
Trends Food Sci. Technol.
127
,
221
(
2022
).
77.
R. H.
Ewoldt
,
P.
Winter
,
J.
Maxey
, and
G. H.
McKinley
, “Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials,”
Rheol. Acta
49
,
191
212
(
2010
).
78.
K.
Hyun
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS),”
Prog. Polym. Sci.
36
,
1697
(
2011
).
79.
E.
García-Tuñón
,
R.
Agrawal
,
B.
Ling
, and
D. J. C.
Dennis
, “Fourier-transform rheology and printability maps of complex fluids for three-dimensional printing,”
Phys. Fluids
35
,
017113
(
2023
).
80.
J. J.
Griebler
and
S. A.
Rogers
, “
The nonlinear rheology of complex yield stress foods
,”
Phys. Fluids
34
,
023107
(
2022
).
81.
R. H.
Ewoldt
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
,
1427
(
2008
).
82.
C.
Gracia-Fernández
,
S.
Gómez-Barreiro
,
A.
Elmoumni
,
A.
Álvarez
,
J.
López-Beceiro
, and
R.
Artiaga
, “Simultaneous application of electro and orthogonal superposition rheology on a starch/silicone oil suspension,”
J. Rheol.
60
,
121
(
2016
).
83.
G.
Colombo
,
S.
Kim
,
T.
Schweizer
,
B.
Schroyen
,
C.
Clasen
,
J.
Mewis
, and
J.
Vermant
, “
Superposition rheology and anisotropy in rheological properties of sheared colloidal gels
,”
J. Rheol.
61
,
1035
(
2017
).
84.
Y. J.
Lee
,
H.
Jin
,
S.
Kim
,
J. S.
Myung
, and
K. H.
Ahn
, “Brownian dynamics simulation on orthogonal superposition rheology: Time–shear rate superposition of colloidal gel,”
J. Rheol.
65
,
337
(
2021
).
85.
R. T.
Leite
,
P. R.
de Souza Mendes
, and
R. L.
Thompson
, “
A simple method to analyze materials under quasilinear large amplitude oscillatory shear flow (QL-LAOS)
,”
J. Rheol.
63
,
305
(
2019
).
86.
P. R.
de Souza Mendes
,
R. L.
Thompson
,
A. A.
Alicke
, and
R. T.
Leite
, “The quasilinear large-amplitude viscoelastic regime and its significance in the rheological characterization of soft matter,”
J. Rheol.
58
,
537
(
2014
).
87.
M.
Shahbazi
,
H.
Jäger
, and
R.
Ettelaie
, “
Application of Pickering emulsions in 3D printing of personalized nutrition—Part II: Functional properties of reduced-fat 3D printed cheese analogues
,”
Colloids Surf. A
624
,
126760
(
2021
).
88.
Z.
Fu
,
S.
Naghieh
,
C.
Xu
,
C.
Wang
,
W.
Sun
, and
X.
Chen
, “Printability in extrusion bioprinting,”
Biofabrication
13
,
033001
(
2021
).
89.
A.
Das
,
E. L.
Gilmer
,
S.
Biria
, and
M. J.
Bortner
, “Importance of polymer rheology on material extrusion additive manufacturing: Correlating process physics to print properties,”
ACS Appl. Polym. Mater.
3
,
1218
(
2021
).
90.
J.
Yu
,
X.
Wang
,
D.
Li
,
L.
Wang
, and
Y.
Wang
, “Development of soy protein isolate emulsion gels as extrusion-based 3D food printing inks: Effect of polysaccharides incorporation,”
Food Hydrocolloids
131
,
107824
(
2022
).
91.
M.
Shahbazi
,
H.
Jäger
,
R.
Ettelaie
, and
J.
Chen
, “Construction of 3D printed reduced-fat meat analogue by emulsion gels. Part I: Flow behavior, thixotropic feature, and network structure of soy protein-based inks,”
Food Hydrocolloids
120
,
106967
(
2021
).
92.
T. M.
Oyinloye
and
W. B.
Yoon
, “Investigation of flow field, die swelling, and residual stress in 3D printing of surimi paste using the finite element method,”
Innovative Food Sci. Emerging Technol.
78
,
103008
(
2022
).
93.
X.
Cui
,
A. S. M.
Saleh
,
S.
Yang
,
N.
Wang
,
P.
Wang
,
M.
Zhu
, and
Z.
Xiao
, “Oleogels as animal fat and shortening replacers: Research advances and application challenges,”
Food Rev. Int.
(published online) (
2022
).
94.
M.
Arenas-Jal
,
J. M.
Suñé-Negre
, and
E.
García-Montoya,
“An overview of microencapsulation in the food industry: Opportunities, challenges, and innovations,”
Eur. Food Res. Technol.
246
,
1371
(
2020
).
95.
E.
Meijaard
,
T. M.
Brooks
,
K. M.
Carlson
,
E. M.
Slade
,
J.
Garcia-Ulloa
,
D. L. A.
Gaveau
,
J. S. H.
Lee
,
T.
Santika
,
D.
Juffe-Bignoli
,
M. J.
Struebig
,
S. A.
Wich
,
M.
Ancrenaz
,
L. P.
Koh
,
N.
Zamira
,
J. F.
Abrams
,
H. H. T.
Prins
,
C. N.
Sendashonga
,
D.
Murdiyarso
,
P. R.
Furumo
,
N.
Macfarlane
,
R.
Hoffmann
,
M.
Persio
,
A.
Descals
,
Z.
Szantoi
, and
D.
Sheil
, “
The environmental impacts of palm oil in context
,”
Nat. Plants
6
,
1418
(
2020
).
96.
L.
Sha
and
Y. L.
Xiong
, “
Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges
,”
Trends Food Sci. Technol.
102
,
51
(
2020
).
97.
X.
Dong
,
J.
Wang
, and
V.
Raghavan
, “
Critical reviews and recent advances of novel non-thermal processing techniques on the modification of food allergens
,”
Crit. Rev. Food Sci. Nutr.
61
,
196
(
2021
).
98.
L.
Grossmann
and
J.
Weiss
, “
Alternative protein sources as technofunctional food ingredients
,”
Annu. Rev. Food Sci. Technol.
12
,
93
(
2021
).
99.
V. K.
Mittermeier-Kleßinger
,
T.
Hofmann
, and
C.
Dawid
, “
Mitigating off-flavors of plant-based proteins
,”
J. Agric. Food Chem.
69
,
9202
(
2021
).
100.
C. W.
Binns
,
M. K.
Lee
,
B.
Maycock
,
L. E.
Torheim
,
K.
Nanishi
, and
D. T. T.
Duong
, “
Climate change, food supply, and dietary guidelines
,”
Annu. Rev. Public Health
42
,
233
(
2021
).
101.
J.
Krieger
,
S. N.
Bleich
,
S.
Scarmo
, and
S. W.
Ng
, “
Sugar-sweetened beverage reduction policies: progress and promise
,”
Annu. Rev. Public Health.
42
,
439
(
2021
).
102.
S.
Suri
,
V.
Kumar
,
R.
Prasad
,
B.
Tanwar
,
A.
Goyal
,
S.
Kaur
,
Y.
Gat
,
A.
Kumar
,
J.
Kaur
, and
D.
Singh
, “Considerations for development of lactose-free food,”
J. Nutr. Intermed. Metab.
15
,
27
(
2019
).
103.
A.
Torbica
,
M.
Radosavljević
,
M.
Belović
,
T.
Tamilselvan
, and
P.
Prabhasankar
, “Biotechnological tools for cereal and pseudocereal dietary fibre modification in the bakery products creation–Advantages, disadvantages and challenges,”
Trends Food Sci. Technol.
129
,
194
(
2022
).
104.
K. C.
Drechsler
and
G. M.
Bornhorst
, “
Modeling the softening of carbohydrate-based foods during simulated gastric digestion
,”
J. Food Eng.
222
,
38
(
2018
).
105.
Y.
Ye
,
J.
Zhou
,
X.
Guan
, and
X.
Sun
, “
Commercialization of cultured meat products: Current status, challenges, and strategic prospects
,”
Future Foods
6
,
100177
(
2022
).
106.
H. K.
Handral
,
S.
Hua Tay
,
W. W.
Chan
, and
D.
Choudhury
, “3D printing of cultured meat products,”
Crit. Rev. Food Sci. Nutr.
62
,
272
(
2022
).
107.
X.
Zhu
,
X.
Yuan
,
Y.
Zhang
,
H.
Liu
,
J.
Wang
, and
B.
Sun
, “
The global concern of food security during the COVID-19 pandemic: Impacts and perspectives on food security
,”
Food Chem.
370
,
130830
(
2022
).
108.
A.
Zoran
, “
Cooking with computers: The vision of digital gastronomy [point of view]
,”
Proc. IEEE
107
,
1467
(
2019
).
109.
D.
Lupton
, “
'Download to delicious': Promissory themes and sociotechnical imaginaries in coverage of 3D printed food in online news sources
,”
Futures
93
,
44
(
2017
).
110.
A.
Fuster
, “Food futures: How design and technology can reshape our food system,”
Int. J. Food Des.
4
,
173
(
2020
).
You do not currently have access to this content.