We study the packing of a large number of congruent and non-overlapping circles inside a regular polygon. We have devised efficient algorithms that allow one to generate configurations of N densely packed circles inside a regular polygon, and we have carried out intensive numerical experiments spanning several polygons (the largest number of sides considered here being 16) and up to 200 circles (400 circles in the special cases of the equilateral triangle and the regular hexagon). Some of the configurations that we have found possibly are not global maxima of the packing fraction, particularly for N1, due to the great computational complexity of the problem, but nonetheless they should provide good lower bounds for the packing fraction at a given N. This is the first systematic numerical study of packing in regular polygons, which previously had only been carried out for the equilateral triangle, the square, and the circle.

1.
P. M. L.
Tammes
, “
On the origin of number and arrangement of the places of exit on the surface of pollen-grains
,”
Recl. Trav. Bot. Néerl.
27
(
1
),
1
84
(
1930
).
2.
D.
Weaire
and
T.
Aste
,
The Pursuit of Perfect Packing
(
CRC Press
,
2008
).
3.
T. C.
Hales
, “
A proof of the Kepler conjecture
,”
Ann. Math.
162
,
1065
1185
(
2005
).
4.
A.
Thue
,
Uber die dichteste Zusammenstellung von kongruenten Kreisen in einer Ebene
(
J. Dybwad
,
1910
), Vol.
1
, pp.
3
9
.
5.
L.
Fejes
, “
Über die dichteste Kugellagerung
,”
Math. Z.
48
(
1
),
676
684
(
1942
).
6.
S.
Kravitz
, “
Packing cylinders into cylindrical containers
,”
Math. Mag.
40
(
2
),
65
71
(
1967
).
7.
G. E.
Reis
, “
Dense packing of equal circles within a circle
,”
Math. Mag.
48
(
1
),
33
37
(
1975
).
8.
H.
Melissen
, “
Densest packings of eleven congruent circles in a circle
,”
Geometriae Dedicata
50
(
1
),
15
25
(
1994
).
9.
R. L.
Graham
 et al, “
Dense packings of congruent circles in a circle
,”
Discrete Math.
181
(
1–3
),
139
154
(
1998
).
10.
B. D.
Lubachevsky
,
R. L.
Graham
, and
F. H.
Stillinger
, “
Patterns and structures in disk packings
,”
Period. Math. Hung.
34
(
1
),
123
142
(
1997
).
11.
B. D.
Lubachevsky
and
R. L.
Graham
, “
Curved hexagonal packings of equal disks in a circle
,”
Discrete Comput. Geom.
18
(
2
),
179
194
(
1997
).
12.
F.
Fodor
, “
The densest packing of 19 congruent circles in a circle
,”
Geometriae Dedicata
74
(
2
),
139
145
(
1999
).
13.
F.
Fodor
, “
The densest packing of 12 congruent circles in a circle
,”
Contrib. Algebra Geom.
41
(
2
),
401
409
(
2000
).
14.
F.
Fodor
, “
The densest packing of 13 congruent circles in a circle
,”
Beitr. Algebra Geom.
44
(
2
),
431
440
(
2003
).
15.
N.
Oler
, “
A finite packing problem
,”
Can. Math. Bull.
4
(
2
),
153
155
(
1961
).
16.
H.
Melissen
, “
Densest packings of congruent circles in an equilateral triangle
,”
Am. Math. Mon.
100
(
10
),
916
925
(
1993
).
17.
J. B. M.
Melissen
, “
Optimal packings of eleven equal circles in an equilateral triangle
,”
Acta Math. Hung.
65
(
4
),
389
393
(
1994
).
18.
J. B.
Melissen
and
P. C.
Schuur
, “
Packing 16, 17 or 18 circles in an equilateral triangle
,”
Discrete Math.
145
(
1–3
),
333
342
(
1995
).
19.
C.
Payan
, “
Empilement de cercles égaux dans un triangle équilatéral a propos d'une conjecture d'Erdös-Oler
,”
Discrete Math.
165–166
,
555
565
(
1997
).
20.
R.
Graham
and
B.
Lubachevsky
, “
Dense packings of equal disks in an equilateral triangle: From 22 to 34 and beyond
,” arXiv:math/0406252 (
2004
).
21.
A.
Joós
, “
Packing 13 circles in an equilateral triangle
,”
Aequationes Math.
95
(
1
),
35
65
(
2021
).
22.
J.
Schaer
, “
The densest packing of 9 circles in a square
,”
Can. Math. Bull.
8
(
3
),
273
277
(
1965
).
23.
J.
Schaer
and
A.
Meir
, “
On a geometric extremum problem
,”
Can. Math. Bull.
8
(
1
),
21
27
(
1965
).
24.
M.
Goldberg
, “
The packing of equal circles in a square
,”
Math. Mag.
43
(
1
),
24
30
(
1970
).
25.
M.
Goldberg
, “
Packing of 14, 16, 17 and 20 circles in a circle
,”
Math. Mag.
44
(
3
),
134
139
(
1971
).
26.
K. J.
Nurmela
and
P. R.
Östergård
, “
Packing up to 50 equal circles in a square
,”
Discrete Comput. Geom.
18
(
1
),
111
120
(
1997
).
27.
K. J.
Nurmela
,
P. R.
Östergård
, and
R.
aus dem Spring
, “
Asymptotic behavior of optimal circle packings in a square
,”
Can. Math. Bull.
42
(
3
),
380
385
(
1999
).
28.
K. J.
Nurmela
, “
More optimal packings of equal circles in a square
,”
Discrete Comput. Geom.
22
(
3
),
439
457
(
1999
).
29.
P. G.
Szabó
and
E.
Specht
, “
packing up to 200 equal circles in a square
,”
Models and Algorithms for Global Optimization
(
Springer
,
2007
), pp.
141
156
.
30.
P. G.
Szabó
 et al,
New Approaches to Circle Packing in a Square: With Program Codes
(
Springer Science & Business Media
,
2007
).
31.
M. C.
Markót
, “
Improved interval methods for solving circle packing problems in the unit square
,”
J. Global Optim.
81
(
3
),
773
803
(
2021
).
32.
P.
Amore
and
T.
Morales
, “
Efficient algorithms for the dense packing of congruent circles inside a square
,”
Discrete Comput. Geom.
2022
,
1
19
.
33.
A.
Heppes
and
H.
Melissen
, “
Covering a rectangle with equal circles
,”
Period. Math. Hung.
34
(
1
),
65
81
(
1997
).
34.
B. D.
Lubachevsky
and
R.
Graham
, “
Dense packings of congruent circles in rectangles with a variable aspect ratio
,” in
Discrete and Computational Geometry
(
Springer
,
Berlin, Heidelberg
,
2003
), pp.
633
650
.
35.
B. D.
Lubachevsky
and
R. L.
Graham
, “
Minimum perimeter rectangles that enclose congruent non-overlapping circles
,”
Discrete Math.
309
(
8
),
1947
1962
(
2009
).
36.
E.
Specht
, “
High density packings of equal circles in rectangles with variable aspect ratio
,”
Comput. Oper. Res.
40
(
1
),
58
69
(
2013
).
37.
E.
Friedman
, see https://erich-friedman.github.io/packing/ for Packing equal copies; accessed on June 8,
2022
.
38.
E.
Specht
, see http://hydra.nat.uni-magdeburg.de/packing/ for Packings of equal and unequal circles in fixed-sized containers; accessed on June 8,
2022
.
39.
P.
Amore
(
2023
). “Coordinates of the packing configurations of arXiv:2212.12287 [cs.CG],”
Zenodo
.
40.
M.
Hifi
and
M.
Rym
, “
A literature review on circle and sphere packing problems: Models and methodologies
,”
Adv. Oper. Res.
2009
,
150624
.
41.
S.
Torquato
, “
Perspective: Basic understanding of condensed phases of matter via packing models
,”
J. Chem. Phys.
149
(
2
),
020901
(
2018
).
42.
V. P.
Brito
 et al, “
Beads-on-a-string packing in two dimensions
,”
Physica A
342
(
3–4
),
419
427
(
2004
).
43.
L.
Boué
and
E.
Katzav
, “
Folding of flexible rods confined in 2D space
,”
Europhys. Lett.
80
(
5
),
54002
(
2007
).)
44.
M. A.
Gomes
 et al, “
Plastic deformation of 2D crumpled wires
,”
J. Phys. D: Appl. Phys.
41
(
23
),
235408
(
2008
).
45.
N.
Stoop
,
F. K.
Wittel
, and
H. J.
Herrmann
, “
Morphological phases of crumpled wire
,”
Phys. Rev. Lett.
101
(
9
),
094101
(
2008
).
46.
M. A. F.
Gomes
 et al, “
Crumpled states of a wire in a two-dimensional cavity with pins
,”
Phys. Rev. E
81
(
3
),
031127
(
2010
).
47.
E.
Bayart
 et al, “
Measuring order in the isotropic packing of elastic rods
,”
Europhys. Lett.
95
(
3
),
34002
(
2011
).
48.
N. N.
Oskolkov
 et al, “
Nematic ordering of polymers in confined geometry applied to DNA packaging in viral capsids
,”
J. Phys. Chem. B
115
(
3
),
422
432
(
2011
).
49.
J.
Guven
and
P.
Vázquez-Montejo
, “
Confinement of semiflexible polymers
,”
Phys. Rev. E
85
(
2
),
026603
(
2012
).
50.
S.
Deboeuf
 et al, “
Comparative study of crumpling and folding of thin sheets
,”
Phys. Rev. Lett.
110
(
10
),
104301
(
2013
).
51.
T. A.
Sobral
 et al, “
Unpacking of a crumpled wire from two-dimensional cavities
,”
PLoS One
10
(
6
),
e0128568
(
2015
).
52.
D.
Grossman
,
E.
Katzav
, and
E.
Sharon
, “
Packing of stiff rods on ellipsoids: Geometry
,”
Phys. Rev. E
103
(
1
),
013001
(
2021
).
53.
Z.
Li
and
H. A.
Scheraga
, “
Monte Carlo-minimization approach to the multiple-minima problem in protein folding
,”
Proc. Natl. Acad. Sci. U. S. A.
84
(
19
),
6611
6615
(
1987
).
54.
D. J.
Wales
and
J. P.
Doye
, “
Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms
,”
J. Phys. Chem. A
101
(
28
),
5111
5116
(
1997
).
55.
D. J.
Wales
and
H. A.
Scheraga
, “
Global optimization of clusters, crystals, and biomolecules
,”
Science
285
(
5432
),
1368
1372
(
1999
).
56.
D.
Wales
,
Energy Landscapes: Applications to Clusters, Biomolecules and Glasses
(
Cambridge University Press
,
2003
).
57.
D. J.
Wales
and
S.
Ulker
, “
Structure and dynamics of spherical crystals characterized for the Thomson problem
,”
Phys. Rev. B
74
(
21
),
212101
(
2006
).
58.
O.
Pouliquen
,
M.
Nicolas
, and
P. D.
Weidman
, “
Crystallization of non-Brownian spheres under horizontal shaking
,”
Phys. Rev. Lett.
79
(
19
),
3640
(
1997
).
59.
B.
Jessica
and
A.
Kudrolli
, “
Maximum and minimum stable random packings of platonic solids
,”
Phys. Rev. E
82
(
6
),
061304
(
2010
).
60.
M. J.
Bowick
,
D. R.
Nelson
, and
A.
Travesset
, “
Interacting topological defects on frozen topologies
,”
Phys. Rev. B
62
,
8738
8751
(
2000
).
61.
M.
Bowick
 et al, “
Crystalline order on a sphere and the generalized Thomson problem
,”
Phys. Rev. Lett.
89
(
18
),
185502
(
2002
).
62.
A. R.
Bausch
 et al, “
Grain boundary scars and spherical crystallography
,”
Science
299
(
5613
),
1716
1718
(
2003
).
63.
D. J.
Wales
,
H.
McKay
, and
E. L.
Altschuler
, “
Defect motifs for spherical topologies
,”
Phys. Rev. B
79
(
22
),
224115
(
2009
).
64.
M. J.
Bowick
and
L.
Giomi
, “
Two dimensional matter: Order, curvature and defects
,”
Adv. Phys.
58
,
449
563
(
2009
).
65.
H.
Kusumaatmaja
and
D. J.
Wales
, “
Defect motifs for constant mean curvature surfaces
,”
Phys. Rev. Lett.
110
(
16
),
165502
(
2013
).
66.
L.
Giomi
and
M.
Bowick
, “
Crystalline order on Riemannian manifolds with variable Gaussian curvature and boundary
,”
Phys. Rev. B
76
(
5
),
054106
(
2007
).
67.
Z.
Yao
and
M. O. D. L.
Cruz
, “
Topological defects in flat geometry: The role of density inhomogeneity
,”
Phys. Rev. Lett.
111
(
11
),
115503
(
2013
).
68.
L.
Fejes Toth
, “
Some packing and covering theorems
,”
Acta Sci. Math.
12
,
62
67
(
1950
).
69.
L.
Fejes Toth
, “
Lagerungen in der ebene, auf der kugel und im raum
,” in
Grund-Lehren Der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete
(
Springer
,
Berlin-Gottingen-Heidelberg
,
1953
), Vol.
65
, p.
67
.
70.
B.
Segre
and
K.
Mahler
, “
On the densest packing of circles
,”
Am. Math. Mon.
51
(
5
),
261
270
(
1944
).
71.
H.
Groemer
, “
Über die Einlagerung von Kreisen in einen konvexen Bereich
,”
Math. Z.
73
(
3
),
285
294
(
1960
).
72.
Z.
Gáspár
and
T.
Tarnai
, “
Upper bound of density for packing of equal circles in special domains in the plane
,”
Period. Polytech. Civil Eng.
44
(
1
),
13
32
(
2000
).
73.
P.
Amore
, “
Circle packing inside an equilateral triangle
;”
Circle packing inside a regular pentagon
;”
Circle packing inside a regular hexagon
;”
Circle packing inside a regular heptagon
;”
Circle packing inside a regular octagon
;”
Circle packing inside a regular nonagon
;”
Circle packing inside a regular decagon
;”
Circle packing in a regular hendecagon
;”
Circle packing inside a regular dodecagon
;”
Circle packing inside a regular tridecagon
;”
Circle packing inside a regular tetradecagon
;”
Circle packing inside a regular pentadecagon
;”
Circle packing inside a regular hexadecagon
,” Zenodo (
2022
).
74.
Wolfram Research, Inc.
,
Mathematica, Version 12.3.1
(
Wolfram Research, Inc.
,
2021
).
75.
Sz.
Horvát
, http://szhorvat.net/pelican/latex-typesetting-in-mathematica.html for LaTeX typesetting in Mathematica.
76.
G.
van Rossum
, “
Python tutorial
,”
Technical Report No. CS-R9526
,
Centrum voor Wiskunde en Informatica (CWI)
,
Amsterdam
,
1995
.
77.
S. K.
Lam
,
P.
Antoine
, and
S.
Seibert
, “
Numba: A LLVM-based python JIT compiler
,” in
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC,
2015
.
You do not currently have access to this content.