Tip clearance is the distance required between the blade tip and the pump body wall of an impeller in a helicon-axial multiphase pump, which tends to induce tip leakage flow. The tip leakage vortex formed by the interaction of tip leakage flow with the mainstream can seriously affect the performance of the multiphase pump. To minimize the adverse effects of tip leakage flow in the multiphase pump, a method to design a squealer tip on the impeller blade is proposed in this paper. The effect of the squealer tip on external characteristics, tip clearance flow characteristics, and energy dissipation of the multiphase pump is analyzed. Research results indicate that the blade squealer tip can effectively improve hydraulic efficiency of the multiphase pump. At the optimal efficiency point, the head and hydraulic efficiency of the multiphase pump with a squealer tip increased by 3.62% and 4.15%, respectively, compared with the original model. The influence of tip leakage flow in the axial rear half passage of the multiphase pump impeller is far greater than that in the axial forward half passage, especially on the back position in the middle of the impeller passage. The squealer tip can restrain the reverse of leakage flow from the pressure side to the suction side of the impeller blade, and the clearance leakage flow of the model with a squealer tip is smaller than that of the original model. The squealer tip on blade will reduce the energy dissipation caused by unsteady flow in the mainstream. The research results in this paper can provide theoretical support for effectively restraining the influence of the tip leakage vortex on the mainstream of the helicon-axial multiphase pump and contribute to engineering practice value of improving the performance of the multiphase pump.

1.
Z.
Liu
,
G.
Shi
,
Y.
Xiao
,
H.
Li
, and
X.
Liu
, “
Effect of the inlet gas void fraction on the tip leakage vortex in a multiphase pump
,”
Renewable Energy
150
,
46
57
(
2020
).
2.
Z.
Shu
,
G.
Shi
,
S.
Tao
,
W.
Tang
, and
C.
Li
, “
Three-dimensional spatial-temporal evolution and dynamics of the tip leakage vortex in an oil-gas multiphase pump
,”
Phys. Fluids
33
,
113320
(
2021
).
3.
Z.
Shu
,
G.
Shi
,
Y.
Dan
,
B.
Wang
, and
X.
Tan
, “
Enstrophy dissipation of the tip leakage vortex in a multiphase pump
,”
Phys. Fluids
34
,
033310
(
2022
).
4.
Z.
Zou
,
F.
Shao
,
Y.
Li
, and
W.
Zhang
, “
Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance
,”
Energy
138
,
167
184
(
2017
).
5.
S.
Lee
and
B.
Chae
, “
Effects of squealer rim height on aerodynamic losses downstream of a high-turning turbine rotor blade
,”
Exp. Therm. Fluid Sci.
32
,
1440
1447
(
2008
).
6.
W.
Li
,
W.
Qiao
,
K.
Xu
, and
H.
Luo
, “
Influence of squealer tip leakage flow in axial turbine
,”
J. Aerosp. Power
23
,
1523
1529
(
2008
).
7.
Z.
Schabowski
,
H.
Hodson
,
D.
Giacche
,
B.
Power
, and
M.
Stokes
, “
Aeromechanical optimization of a winglet-squealer tip for an axial turbine
,”
J. Turbomach.
136
,
071004
(
2014
).
8.
N.
Harvey
,
D.
Newman
,
F.
Haselbach
, and
L.
Willer
, “
An investigation into a novel turbine rotor winglet—Part I: Design and model rig test results
,”
ASME Turbo Expo: Power Land, Sea, Air
6
,
585
596
(
2008
).
9.
H.
Yang
,
H.
Chen
, and
J.
Han
, “
Turbine rotor with various tip configurations flow and heat transfer prediction
,”
J. Thermophys. Heat Transfer
20
,
80
91
(
2006
).
10.
A.
Ameri
, “
Heat transfer and flow on the blade tip of a gas turbine equipped with a mean-camberline strip
,”
J. Turbomach.
123
,
704
708
(
2001
).
11.
A.
Ameri
,
R.
Bunker
, and
J.
Bailey
, “
Heat transfer and flow on the first-stage blade tip of a power generation gas turbine—Part 2: Simulation results
,”
J. Turbomach.
122
,
272
277
(
2000
).
12.
A.
Ameri
,
R.
Bunker
, and
J.
Bailey
, “
Heat transfer and flow on the first-stage blade tip of a power generation gas turbine—Part 1: Experimental results
,”
J. Turbomach.
122
,
263
271
(
2000
).
13.
R.
Matzgeller
,
M.
Voges
, and
M.
Schroll
, “
Investigation of unsteady compressor flow structure with tip injection using particle image velocimetry
,”
ASME Turbo Expo: Power Land, Sea, Air
7
,
53
63
(
2011
).
14.
R.
Matzgeller
and
R.
Pichler
, “
Modeling of discrete tip injection in a two-dimensional streamline curvature method
,”
ASME Turbo Expo: Power Land, Sea, Air
8
,
451
460
(
2012
).
15.
H.
Zhang
,
Y.
Wu
, and
Y.
Li
, “
Control of compressor tip leakage flow using plasma actuation
,”
Aerosp. Sci. Technol.
86
,
244
255
(
2019
).
16.
S.
Morris
,
T.
Corke
, and
D.
VanNess
, “
Tip clearance control using plasma actuators
,” AIAA Paper No. 2005-782,
2005
.
17.
T.
Douville
,
J.
Stephens
, and
T.
Corke
, “
Turbine blade tip leakage flow control by partial squealer tip and plasma actuators
,” AIAA Paper No. 2006-20,
2006
.
18.
C.
Zhou
and
H.
Hodson
, “
Squealer geometry effects on aerothermal performance of tip-leakage flow of cavity tips
,”
J. Propul. Power
28
,
556
(
2012
).
19.
C.
Zhou
, “
Effects of endwall motion on thermal performance of cavity tips with different squealer width and height
,”
Int. J. Heat Mass Transfer
91
,
1248
1258
(
2015
).
20.
B.
Cernat
,
M.
Pátý
, and
C.
Maesschalck
, “
Experimental and numerical investigation of optimized blade tip shapes—Part I: Turbine rainbow rotor testing and numerical methods
,”
J. Turbomach.
141
,
011006
(
2019
).
21.
B.
Cernat
,
M.
Pátý
, and
C.
Maesschalck
, “
Experimental and numerical investigation of optimized blade tip shapes—Part II: Tip flow analysis and loss mechanisms
,”
ASME Turbo Expo: Power Land, Sea, Air
5B
,
141
(
2019
).
22.
J.
Gao
and
Q.
Zheng
, “
Effect of squealer tip geometry on rotor blade aerodynamic performance
,”
Acta Aeronaut. Astronaut. Sin.
34
,
218
226
(
2013
).
23.
T.
Wang
and
Y.
Xuan
, “
Effect of stepped squealer tip on flow of leakage through turbine blade tip
,”
Sci. Sin. Technol.
50
,
1288
1297
(
2020
).
24.
H.
Hou
,
Y.
Zhang
, and
Z.
Li
, “
Numerical analysis of entropy production on a LNG cryogenic submerged pump
,”
J. Nat. Gas Sci. Eng.
36
,
87
96
(
2016
).
25.
R.
Gong
,
H.
Wang
, and
L.
Chen
, “
Application of entropy production theory to hydro-turbine hydraulic analysis
,”
Sci. China
56
,
1636
1643
(
2013
).
26.
F.
Kock
and
H.
Herwig
, “
Entropy production calculation for turbulent shear flows and their implementation in CFD codes
,”
Int. J. Heat Fluid Flow
26
,
672
680
(
2005
).
27.
H.
Herwig
and
F.
Kock
, “
Local entropy production in turbulent shear flows: A tool for evaluating heat transfer performance
,”
J. Therm. Sci.
15
,
159
167
(
2006
).
28.
H.
Herwig
and
F.
Kock
, “
Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems
,”
Heat Mass Transfer
43
,
207
215
(
2007
).
29.
J.
Mathieu
and
J.
Scott
,
An Introduction to Turbulent Flow
(
Cambridge University Press
,
2000
).
30.
F.
Wang
, “
Research progress of computational model for rotating turbulent flow in fluid machinery
,”
Trans. Chin. Soc. Agric. Mach.
47
,
1
14
(
2016
).
31.
H.
Zhang
and
D.
Zhang
, “
Formation and evolution mechanism of tip leakage vortex in axial flow pump and vortex cavitation analysis
,”
Trans. Chin. Soc. Agric. Mach.
52
,
157
167
(
2021
).
You do not currently have access to this content.