The onset of periodic time-varying magnetoconvection in a regime relevant to the Earth's outer core is investigated in this study. A rapidly rotating plane fluid layer subject to an axially varying horizontal magnetic field is considered under the dynamical regimes of stronger magnetic diffusion compared to thermal and viscous diffusion rates. Dynamically specific convective instabilities, both inside and outside the tangent cylinder regions of the Earth's core, have been investigated by using appropriate patterns of the imposed mean magnetic field. The hallmark of convection onset, with such axially varying mean field, is a viscous oscillatory mode weakly modified by the magnetic field. This modified viscous oscillatory (mVO) mode is observed to exist over a wide range of the strength of the imposed field, making it a dynamically appropriate flow structure with characteristics of outer core convection. An optimal Prandtl number P r * is found through numerical experiments where the mVO mode can be the most unstable to infinitesimal perturbations. It is further shown that this optimal state admits oscillations for earthlike regimes where thermal diffusion is much less than magnetic diffusion. Also, the formation of columnar convection rolls from isolated vortices is demonstrated as a result of combinations of the classical viscous oscillatory and mVO modes in the rapidly rotating limit (Ekman number E 0). Overall, the qualitative characteristics of magnetoconvection modes for the various imposed patterns are found to be similar despite representing distinct regions in the Earth's outer core.

1.
Acheson
,
D. J.
and
Hide
,
R.
, “
Hydromagnetics of rotating fluids
,”
Rep. Prog. Phys.
36
,
159
221
(
1973
).
2.
Banerjee
,
A.
,
Ghosh
,
M.
,
Sharma
,
L.
, and
Pal
,
P.
, “
Overstable rotating convection in the presence of a vertical magnetic field
,”
Phys. Fluids
33
(
3
),
034130
(
2021
).
3.
Banerjee
,
D.
and
Pandit
,
R.
Two-dimensional magnetohydrodynamic turbulence with large and small energy-injection length scales
,”
Phys. Fluids
31
(
6
),
065111
(
2019
).
4.
Baszenski
,
G.
and
Tasche
,
M.
Fast polynomial multiplication and convolutions related to the discrete cosine transform
,”
Linear Algebra its Appl.
252
(
1–3
),
1
25
(
1997
).
5.
Belyaev
,
I.
,
Krasnov
,
D.
,
Kolesnikov
,
Y.
,
Biryukov
,
D.
,
Chernysh
,
D.
,
Zikanov
,
O.
, and
Listratov
,
Y.
, “
Effects of symmetry on magnetohydrodynamic mixed convection flow in a vertical duct
,”
Phys. Fluids
32
(
9
),
094106
(
2020
).
6.
Boyd
,
J. P.
,
Chebyshev and Fourier Spectral Methods
(
Dover Publications
,
New York
,
2001
).
7.
Calkins
,
M. A.
,
Julien
,
K.
, and
Marti
,
P.
, “
Three-dimensional quasi-geostrophic convection in the rotating cylindrical annulus with steeply sloping endwalls
,”
J. Fluid Mech.
732
,
214
244
(
2013
).
8.
Chandrasekhar
,
S.
,
Hydrodynamic and Hydromagnetic Stability
(
Dover Publications
,
1961
.
9.
Christensen
,
U. R.
and
Aubert
,
J.
Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields
,”
Geophys. J. Int.
166
(
1
),
97
114
(
2006
).
10.
Dang-Vu
,
H.
and
Delcarte
,
C.
An accurate solution of the Poisson equation by the Chebyshev collocation method
,”
J. Comput. Phys.
104
(
1
),
211
220
(
1993
).
11.
Davidson
,
P. A.
,
An Introduction to Magnetohydrodynamics
(
Cambridge University Press
,
2002
).
12.
Fearn
,
D. R.
and
Proctor
,
M. R. E.
Hydromagnetic waves in a differentially rotating sphere
,”
J. Fluid Mech.
128
,
1
20
(
1983
).
13.
Garai
,
S.
and
Sahoo
,
S.
, “
On convective instabilities in a rotating fluid with stably stratified layer and thermally heterogeneous boundary
,”
Phys. Fluids
34
(
12
),
124101
(
2022
).
14.
Ghosh
,
M.
,
Ghosh
,
P.
,
Nandukumar
,
Y.
, and
Pal
,
P.
Transitions near the onset of low Prandtl-number rotating convection in presence of horizontal magnetic field
,”
Phys. Fluids
32
(
2
),
024110
(
2020
).
15.
Gopinath
,
V.
and
Sreenivasan
,
B.
, “
On the control of rapidly rotating convection by an axially varying magnetic field
,”
Geophys. Astrophys. Fluid Dyn.
109
(
6
),
567
586
(
2015
).
16.
Greenspan
,
H. P.
,
The Theory of Rotating Fluids
(
Cambridge University Press
,
1968
).
17.
Hasan
,
M. S.
and
Saha
,
S. K.
, “
Evolution of solid–liquid interface in bottom heated cavity for low Prandtl number using lattice Boltzmann method
,”
Phys. Fluids
33
(
5
),
057102
(
2021
).
18.
Jones
,
C.
and
Schubert
,
G.
, “
Thermal and compositional convection in the outer core
,”
Treatise Geophys., Core Dyn.
8
,
131
185
(
2015
).
19.
Jones
,
C. A.
,
Mussa
,
A. I.
, and
Worland
,
S. J.
, “
Magnetoconvection in a rapidly rotating sphere: The weak-field case
,”
Proc. R. Soc. London, Ser. A
459
,
773
797
(
2003
).
20.
Julien
,
K.
and
Watson
,
M.
, “
Efficient multi-dimensional solution of PDEs using Chebyshev spectral methods
,”
J. Comput. Phys.
228
(
5
),
1480
1503
(
2009
).
21.
Kloss
,
C.
and
Finlay
,
C. C.
, “
Time-dependent low-latitude core flow and geomagnetic field acceleration pulses
,”
Geophys. J. Int.
217
(
1
),
140
168
(
2019
).
22.
Liu
,
F.
,
Ye
,
X.
, and
Wang
,
X.
Efficient Chebyshev spectral method for solving linear elliptic PDEs using quasi-inverse technique
,”
Numer. Math.: Theory, Methods Appl.
4
(
2
),
197
215
(
2011
).
23.
Longbottom
,
A. W.
,
Jones
,
C. A.
, and
Hollerbach
,
R.
, “
Linear magnetoconvection in a rotating spherical shell, incorporating a finitely conducting inner core
,”
Geophys. Astrophys. Fluid Dyn.
80
,
205
227
(
1995
).
24.
Luo
,
J.
and
Jackson
,
A.
, “
Waves in the earth's core. I. Mildly diffusive torsional oscillations
,”
Proc. R. Soc. A
478
(
2259
),
20210982
(
2022
).
25.
Marsenić
,
A.
and
Ševčík
,
S.
, “
Stability of sheared magnetic field in dependence on its critical level position
,”
Phys. Earth Planet. Inter.
179
,
32
44
(
2010
).
26.
Marti
,
P.
,
Calkins
,
M. A.
, and
Julien
,
K.
, “
A computationally efficient spectral method for modeling core dynamics
,”
Geochem. Geophys. Geosyst.
17
(
8
),
3031
3053
(
2016
).
27.
Moffatt
,
H. K.
,
Field Generation in Electrically Conducting Fluids
(
Cambridge University Press
,
1978
), Vol.
2, p
.
5
.
28.
Moler
,
C. B.
and
Stewart
,
G. W.
, “
An algorithm for generalized matrix eigenvalue problems
,”
SIAM J. Numer. Anal.
10
(
2
),
241
256
(
1973
).
29.
Olson
,
P.
,
Christensen
,
U.
, and
Glatzmaier
,
G. A.
, “
Numerical modeling of the geodynamo: Mechanisms of field generation and equilibration
,”
J. Geophys. Res.: Solid Earth
104
(
B5
),
10383
10404
, https://doi.org/10.1029/1999JB900013 (
1999
).
30.
Olver
,
S.
and
Townsend
,
A.
, “
A fast and well-conditioned spectral method
,”
SIAM Rev.
55
(
3
),
462
489
(
2013
).
31.
Peyret
,
R.
,
Spectral Methods for Incompressible Viscous Flow
(
Springer Science & Business Media
,
2013
, Vol.
148
.
32.
Reddy
,
K. S.
and
Verma
,
M. K.
, “
Strong anisotropy in quasi-static magnetohydrodynamic turbulence for high interaction parameters
,”
Phys. Fluids
26
,
025109
(
2014
).
33.
Roberts
,
P. H.
and
Jones
,
C. A.
, “
The onset of magnetoconvection at large Prandtl number in a rotating layer. I
.
Finite magnetic diffusion,” Geophys. Astrophys. Fluid Dyn.
92
(
3–4
),
289
325
(
2000
).
34.
Roberts
,
P. H.
and
King
,
E. M.
, “
On the genesis of the earth's magnetism
,”
Rep. Prog. Phys.
76
(
9
),
096801
(
2013
).
35.
Sahoo
,
S.
and
Sreenivasan
,
B.
, “
Response of earth's magnetic field to large lower mantle heterogeneity
,”
Earth Planet. Sci. Lett.
549
,
116507
(
2020
).
36.
Schaeffer
,
N.
,
Jault
,
D.
,
Nataf
,
H.-C.
, and
Fournier
,
A.
, “
Turbulent geodynamo simulations: A leap towards earth's core
,”
Geophys. J. Int.
211
(
1
),
1
29
(
2017
).
37.
Schumacher
,
J.
, “
The various facets of liquid metal convection
,”
J. Fluid Mech.
946
,
F1
(
2022
).
38.
Sommeria
,
J.
and
Moreau
,
R.
, “
Why, how, and when, MHD turbulence becomes two-dimensional
,”
J. Fluid Mech.
118
,
507
518
(
1982
).
39.
Soward
,
A. M.
, “
Thermal and magnetically driven convection in a rapidly rotating fluid layer
,”
J. Fluid Mech.
90
,
669
684
(
1979
).
40.
Sreenivasan
,
B.
and
Gopinath
,
V.
, “
Confinement of rotating convection by a laterally varying magnetic field
,”
J. Fluid Mech.
822
,
590
616
(
2017
).
41.
Sreenivasan
,
B.
and
Jones
,
C. A.
, “
Helicity generation and subcritical behaviour in rapidly rotating dynamos
,”
J. Fluid Mech.
688
,
5
30
(
2011
).
42.
Sreenivasan
,
B.
and
Maurya
,
G.
, “
Evolution of forced magnetohydrodynamic waves in a stratified fluid
,”
J. Fluid Mech.
922
,
A32
(
2021
).
43.
Sreenivasan
,
B.
and
Narasimhan
,
G.
, “
Damping of magnetohydrodynamic waves in a rotating fluid
,”
J. Fluid Mech.
828
,
867
905
(
2017
).
44.
Tucker
,
P. J. Y.
and
Jones
,
C. A.
, “
Magnetic and thermal instabilities in a plane layer: I
,”
Geophys. Astrophys. Fluid Dyn.
86
(
1–4
),
201
227
(
1997
).
45.
Watson
,
M.
, “
A study of rotationally constrained convection in tall aspect ratio annular geometries
,” Ph.D. thesis (
University of Colorado at Boulder
,
2008
.
46.
Zhang
,
K.
, “
Spherical shell rotating convection in the presence of a toroidal magnetic field
,”
Proc. R. Soc. London, Ser. A
448
,
243
268
(
1995
).
47.
Zhang
,
K.
and
Schubert
,
G.
, “
Magnetohydrodynamics in rapidly rotating spherical systems
,”
Annu. Rev. Fluid Mech.
32
(
1
),
409
443
(
2000
).
48.
Zhang
,
X.
and
Zikanov
,
O.
, “
Convection instability in a downward flow in a vertical duct with strong transverse magnetic field
,”
Phys. Fluids
30
(
11
),
117101
(
2018
).
49.
Zikanov
,
O.
and
Thess
,
A.
, “
Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number
,”
J. Fluid Mech.
358
,
299
333
(
1998
).

Supplementary Material

You do not currently have access to this content.