Confined geometries have an effect on hydrodynamic instabilities, and this provides opportunities for controlling the rate of mixing in flows of engineering relevance. In multi-component fluids, differential diffusion allows for novel types of hydrodynamic instability that have finite amplitude manifestations even in millimeter-scale channels. We present numerical simulations that demonstrate that localized channel constrictions can serve to partially “catch” the manifestations of double diffusive instabilities. The fluid collects just above the narrowest point of the constriction and eventually undergoes a secondary instability. We study this secondary instability, focusing on its chaotic nature and on the way in which flow into the region below the constriction is controlled by the constriction amplitude and shape.

1.
P.
Hazel
, “
Numerical studies of the stability of inviscid stratified shear flows
,”
J. Fluid Mech.
51
,
39
61
(
1972
).
2.
N.-T.
Nguyen
,
S. T.
Wereley
, and
S. A. M.
Shaegh
,
Fundamentals and Applications of Microfluidics
(
Artech House
,
2019
).
3.
M. E.
Stern
, “
The ‘salt-fountain’ and thermohaline convection
,”
Tellus
12
,
172
175
(
1960
).
4.
T.
Radko
,
Double-Diffusive Convection
(
Cambridge University Press
,
2013
).
5.
D.
Brydon
,
S.
Sun
, and
R.
Bleck
, “
A new approximation of the equation of state for seawater, suitable for numerical ocean models
,”
J. Geophys. Res.: Oceans
104
,
1537
1540
, (
1999
).
6.
T. J.
McDougall
,
D. R.
Jackett
,
D. G.
Wright
, and
R.
Feistel
, “
Accurate and computationally efficient algorithms for potential temperature and density of seawater
,”
J. Atmos. Oceanic Technol.
20
,
730
741
(
2003
).
7.
P. K.
Kundu
and
I. M.
Cohen
,
Fluid Mechanics
, 2nd ed. (
Academic Press
,
2002
).
8.
R. W.
Schmitt
, “
Double diffusion in oceanography
,”
Annu. Rev. Fluid Mech.
26
,
255
285
(
1994
).
9.
R. W.
Schmitt
, “
The characteristics of salt fingers in a variety of fluid systems, including stellar interiors, liquid metals, oceans, and magmas
,”
Phys. Fluids
26
,
2373
2377
(
1983
).
10.
S.
Kumar
,
K. M.
Gangawane
, and
H. F.
Oztop
, “
Applications of lattice Boltzmann method for double-diffusive convection in the cavity: A review
,”
J. Therm. Anal. Calorim.
147
,
10889
10921
(
2022
).
11.
J.
Turner
, “
Double-diffusive phenomena
,”
Annu. Rev. Fluid Mech.
6
,
37
54
(
1974
).
12.
Y.
You
, “
A global ocean climatological atlas of the turner angle: Implications for double-diffusion and water-mass structure
,”
Deep Sea Res., Part I
49
,
2075
2093
(
2002
).
13.
E.
Kunze
, “
A review of oceanic salt-fingering theory
,”
Prog. Oceanogr.
56
,
399
417
(
2003
).
14.
S.
Alqatari
,
T. E.
Videbæk
,
S. R.
Nagel
,
A.
Hosoi
, and
I.
Bischofberger
, “
Confinement-induced stabilization of the Rayleigh-Taylor instability and transition to the unconfined limit
,”
Sci. Adv.
6
,
eabd6605
(
2020
).
15.
A.
Koberinski
,
A.
Baglaenko
, and
M.
Stastna
, “
Schmidt number effects on Rayleigh-Taylor instability in a thin channel
,”
Phys. Fluids
27
,
084102
(
2015
).
16.
A.
Coutino
, “
Hydrodynamics of the Yucatan peninsula carbonate aquifer: Surface flow, inland propagation and mixing
,” Ph.D. thesis (
UWSpace
,
2021
).
17.
S.
Legare
,
A.
Grace
, and
M.
Stastna
, “
Double-diffusive instability in a thin vertical channel
,”
Phys. Fluids
33
,
114106
(
2021
).
18.
F. J.
Merceret
, “
A possible manifestation of double diffusive convection in the atmosphere
,”
Boundary-Layer Meteorol.
11
,
121
123
(
1977
).
19.
B.
Magnell
, “
Salt fingers observed in the Mediterranean outflow region (34°N, 11°W) using a towed sensor
,”
J. Phys. Oceanogr.
6
,
511
523
(
1976
).
20.
S.
Kumar
and
K. M.
Gangawane
, “
Double-diffusive convection in a rectangular cavity subjected to an external magnetic field with heated rectangular blockage insertion for liquid sodium–potassium alloy
,”
Phys. Fluids
34
,
023604
(
2022
).
21.
S.
Kumar
and
K. M.
Gangawane
, “
Effect of the aspect ratio of the shallow enclosure and built-in rectangular blockage on MHD double-diffusive free convection subjugated to non-uniform boundary conditions
,”
Heat Transfer
51
,
7655
7687
(
2022
).
22.
B.-X.
Zhao
and
J.-Q.
Yang
, “
Numerical investigation of 2D double-diffusive convection in rectangular cavities with different aspect ratios: Heat and mass transfer and flow characteristics
,”
Phys. Fluids
34
,
034120
(
2022
).
23.
C.-C.
Wang
and
F.
Chen
, “
On the double-diffusive layer formation in the vertical annulus driven by radial thermal and salinity gradients
,”
Mech. Res. Commun.
125
,
103991
(
2022
).
24.
V.
Sharma
,
H. B.
Othman
,
Y.
Nagatsu
, and
M.
Mishra
, “
Viscous fingering of miscible annular ring
,”
J. Fluid Mech.
916
,
A14
(
2021
).
25.
D. A.
Nield
and
A.
Bejan
,
Convection in Porous Media
(
Springer
,
2017
).
26.
P. T.
Imhoff
and
T.
Green
, “
Experimental investigation of double-diffusive groundwater fingers
,”
J. Fluid Mech.
188
,
363
382
(
1988
).
27.
C. T.
Simmons
,
K. A.
Narayan
, and
R. A.
Wooding
, “
On a test case for density-dependent groundwater flow and solute transport models: The salt lake problem
,”
Water Resour. Res.
35
,
3607
3620
, (
1999
).
28.
A. J.
Love
,
C. T.
Simmons
, and
D.
Nield
, “
Double-diffusive convection in groundwater wells
,”
Water Resour. Res.
43
,
W08428
(
2007
).
29.
C.
Shen
,
G.
Jin
,
P.
Xin
,
J.
Kong
, and
L.
Li
, “
Effects of salinity variations on pore water flow in salt marshes
,”
Water Resour. Res.
51
,
4301
4319
, (
2015
).
30.
A.
Mohamad
,
R.
Bennacer
, and
J.
Azaiez
, “
Double diffusion natural convection in a rectangular enclosure filled with binary fluid saturated porous media: The effect of lateral aspect ratio
,”
Phys. Fluids
16
,
184
199
(
2004
).
31.
S.
Kondo
,
H.
Gotoda
,
T.
Miyano
, and
I. T.
Tokuda
, “
Chaotic dynamics of large-scale double-diffusive convection in a porous medium
,”
Physica D
364
,
1
7
(
2018
).
32.
X.
Zhang
,
L.-l.
Wang
,
H.
Zhu
, and
C.
Zeng
, “
Modeling of salt finger convection through a fluid-saturated porous interface: Representative elementary volume scale simulation and effect of initial buoyancy ratio
,”
Phys. Fluids
32
,
082109
(
2020
).
33.
X.
Zhang
,
L.-l.
Wang
,
H.
Zhu
, and
C.
Zeng
, “
Pore-scale simulation of salt fingers in porous media using a coupled iterative source-correction immersed boundary-lattice Boltzmann solver
,”
Appl. Math. Modell.
94
,
656
675
(
2021
).
34.
B.
Ling
,
M.
Oostrom
,
A. M.
Tartakovsky
, and
I.
Battiato
, “
Hydrodynamic dispersion in thin channels with micro-structured porous walls
,”
Phys. Fluids
30
,
076601
(
2018
).
35.
S.
Liu
,
L.
Jiang
,
K. L.
Chong
,
X.
Zhu
,
Z.-H.
Wan
,
R.
Verzicco
,
R. J.
Stevens
,
D.
Lohse
, and
C.
Sun
, “
From Rayleigh–Bénard convection to porous-media convection: How porosity affects heat transfer and flow structure
,”
J. Fluid Mech.
895
,
A18
(
2020
).
36.
S.
Hamimid
,
M.
Guellal
, and
M.
Bouafia
, “
Limit of the buoyancy ratio in Boussinesq approximation for double-diffusive convection in binary mixture
,”
Phys. Fluids
33
,
036101
(
2021
).
37.
C. J.
Subich
,
K. G.
Lamb
, and
M.
Stastna
, “
Simulation of the Navier–Stokes equations in three dimensions with a spectral collocation method
,”
Int. J. Numer. Methods Fluids
73
,
103
129
(
2013
).
38.
L. N.
Trefethen
,
Spectral Methods in MATLAB
(
SIAM
,
2000
).
39.
X.
Liang
,
L.
Wang
,
D.
Li
,
B.
Ma
, and
K.
He
, “
Lattice Boltzmann modeling of double-diffusive convection of dielectric liquid in rectangular cavity subjected to unipolar injection
,”
Phys. Fluids
33
,
067106
(
2021
).
40.
X.
Li
,
D.
Yuan
, and
Z.
Zhang
, “
Multiphase smoothed particle hydrodynamics modeling of diffusive flow through porous media
,”
Phys. Fluids
33
,
106603
(
2021
).
41.
R.
Fatehi
and
M. T.
Manzari
, “
Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives
,”
Comput. Math. Appl.
61
,
482
498
(
2011
).
42.
S.
Khirevich
and
T. W.
Patzek
, “
Behavior of numerical error in pore-scale lattice Boltzmann simulations with simple bounce-back rule: Analysis and highly accurate extrapolation
,”
Phys. Fluids
30
,
093604
(
2018
).
43.
W.
Smyth
,
J.
Nash
, and
J.
Moum
, “
Differential diffusion in breaking Kelvin–Helmholtz billows
,”
J. Phys. Oceanogr.
35
,
1004
1022
(
2005
).
44.
S.
Harnanan
,
N.
Soontiens
, and
M.
Stastna
, “
Internal wave boundary layer interaction: A novel instability over broad topography
,”
Phys. Fluids
27
,
016605
(
2015
).
45.
D.
Deepwell
,
M.
Stastna
,
M.
Carr
, and
P. A.
Davies
, “
Interaction of a mode-2 internal solitary wave with narrow isolated topography
,”
Phys. Fluids
29
,
076601
(
2017
).
46.
K.
Ghorayeb
and
A.
Mojtabi
, “
Double diffusive convection in a vertical rectangular cavity
,”
Phys. Fluids
9
,
2339
2348
(
1997
).
47.
B.
Shankar
,
J.
Kumar
, and
I.
Shivakumara
, “
Stability of double-diffusive natural convection in a vertical fluid layer
,”
Phys. Fluids
33
,
094113
(
2021
).
48.
S.
Martin
, “
A hydrodynamic curiosity: The salt oscillator
,”
Geophys. Astrophys. Fluid Dyn.
1
,
143
160
(
1970
).
You do not currently have access to this content.