The interactions between an incident shock and a moderately dense particle curtain are simulated with the Eulerian–Lagrangian method. A customized solver based on OpenFOAM is extended with an improved drag model and collision model and then validated against two benchmark experiments. The results show that the collision model has a limited impact on curtain morphology compared with the improved drag model. In this work, parametric studies are performed considering different particle sizes, volume fractions, and curtain thicknesses. Smaller particle sizes and larger volume fractions lead to stronger reflected shock and weaker transmitted shock. Attention is paid to the particle collision effects on the curtain evolution behaviors. According to our results, for the mono-dispersed particle curtain, the collision effects on curtain front behaviors are small, even when the initial particle volume fraction is as high as 20%. This is due to the positive velocity gradient across the curtain after the shock wave passage, leading to the faster motion of downstream particles than the upstream ones, and hence, no collision occurs. For the bi-dispersed particle curtain, the collision effects become important in the mixing region of different-size particles. Collisions decelerate small particles while accelerating large ones and cause velocity scattering. Moreover, increasing the bi-dispersed curtain thickness leads to multiple collision force peaks, which is the result of the delayed separation of different particle groups. Our results indicate that the collision model may be unnecessary to predict curtain fronts in mono-dispersed particles, but in bi-dispersed particles, the collision effects are important and, therefore, must be modeled.

1.
S.
Yin
,
M.
Meyer
,
W.
Li
,
H.
Liao
, and
R.
Lupoi
, “
Gas flow, particle acceleration, and heat transfer in cold spray: A review
,”
J. Therm. Spray Technol.
25
,
874
896
(
2016
).
2.
Z.
Huang
and
H.
Zhang
, “
On the interactions between a propagating shock wave and evaporating water droplets
,”
Phys. Fluids
32
,
123315
(
2020
).
3.
S.
Badiei
,
P. U.
Andersson
, and
L.
Holmlid
, “
High-energy Coulomb explosions in ultra-dense deuterium: Time-of-flight-mass spectrometry with variable energy and flight length
,”
Int. J. Mass Spectrom.
282
,
70
76
(
2009
).
4.
J. L.
Wagner
,
S. J.
Beresh
,
S. P.
Kearney
,
W. M.
Trott
,
J. N.
Castaneda
,
B. O.
Pruett
, and
M. R.
Baer
, “
A multiphase shock tube for shock wave interactions with dense particle fields
,”
Exp. Fluids
52
,
1507
(
2012
).
5.
J. L.
Wagner
,
S. P.
Kearney
,
S. J.
Beresh
,
E. P.
DeMauro
, and
B. O.
Pruett
, “
Flash x-ray measurements on the shock-induced dispersal of a dense particle curtain
,”
Exp. Fluids
56
,
213
(
2015
).
6.
V. M.
Boiko
,
V. P.
Kiselev
,
S. P.
Kiselev
,
A. N.
Papyrin
,
S. V.
Poplavskii
, and
V. M.
Fomin
, “
Interaction of a shock wave with a cloud of particles
,”
Combust. Explos. Shock Waves
32
,
191
(
1996
).
7.
Y.
Sugiyama
,
H.
Ando
,
K.
Shimura
, and
A.
Matsuo
, “
Numerical investigation of the interaction between a shock wave and a particle cloud curtain using a CFD–DEM model
,”
Shock Waves
29
,
499
(
2018
).
8.
Y.
Ling
,
J. L.
Wagner
,
S. J.
Beresh
,
S. P.
Kearney
, and
S.
Balachandar
, “
Interaction of a planar shock wave with a dense particle curtain: Modeling and experiments
,”
Phys. Fluids
24
,
113301
(
2012
).
9.
C.
Park
,
J.
Matthew
,
N. H.
Kim
, and
R. T.
Haftka
, “
Epistemic uncertainty stemming from measurement processing—A case study of multiphase shock tube experiments
,”
J. Verif. Validation Uncertainty Quantif.
3
,
041001
(
2018
).
10.
T. G.
Theofanous
,
V.
Mitkin
, and
C.-H.
Chang
, “
The dynamics of dense particle clouds subjected to shock waves. I. Experiments and scaling laws
,”
J. Fluid Mech.
792
,
658
(
2016
).
11.
T. G.
Theofanous
,
V.
Mitkin
, and
C.-H.
Chang
, “
Shock dispersal of dilute particle clouds
,”
J. Fluid Mech.
841
,
732
(
2018
).
12.
H.
Lv
,
Z.
Wang
, and
J.
Li
, “
Experimental study of planar shock wave interactions with dense packed sand wall
,”
Int. J. Multiphase Flow
89
,
255
(
2017
).
13.
E. P.
DeMauro
,
J. L.
Wagner
,
S. J.
Beresh
, and
P. A.
Farias
, “
Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV
,”
Phys. Rev. Fluids
2
,
064301
(
2017
).
14.
E. P.
DeMauro
,
J. L.
Wagner
,
L. J.
DeChant
,
S. J.
Beresh
, and
A. M.
Turpin
, “
Improved scaling laws for the shock-induced dispersal of a dense particle curtain
,”
J. Fluid Mech.
876
,
881
(
2019
).
15.
K. A.
Daniel
and
J. L.
Wagner
, “
The shock-induced dispersal of particle curtains with varying material density
,”
Int. J. Multiphase Flow
152
,
104082
(
2022
).
16.
Y.
Mehta
,
K.
Salari
,
T. L.
Jackson
, and
S.
Balachandar
, “
Effect of Mach number and volume fraction in air-shock interacting with a bed of randomly distributed spherical particles
,”
Phys. Rev. Fluids
4
,
014303
(
2019
).
17.
A. N.
Osnes
,
M.
Vartdal
,
M. G.
Omang
, and
B. A. P.
Reif
, “
Computational analysis of shock-induced flow through stationary particle clouds
,”
Int. J. Multiphase Flow
114
,
268
(
2019
).
18.
G. S.
Shallcross
,
R. O.
Fox
, and
J.
Capecelatro
, “
A volume-filtered description of compressible particle-laden flows
,”
Int. J. Multiphase Flow
122
,
103138
(
2020
).
19.
C.
Crowe
,
M.
Sommerfeld
, and
Y.
Tsuji
,
Multiphase Flows with Droplets and Particles
(CRC Press,
1998
).
20.
L.-J.
Jiang
and
M.
Li
, “
Particle-resolved simulations of shock-induced inviscid flow through particle-curtain at initial stage
,”
Comput. Fluids
232
,
105196
(
2022
).
21.
J.-P.
Minier
, “
On Lagrangian stochastic methods for turbulent polydisperse two-phase reactive flows
,”
Prog. Energy Combust. Sci.
50
,
1
(
2015
).
22.
A.
Innocenti
,
C.
Marchioli
, and
S.
Chibbaro
, “
Lagrangian filtered density function for LES-based stochastic modelling of turbulent particle-laden flows
,”
Phys. Fluids
28
,
115106
(
2016
).
23.
H.
Liu
,
Y.
Guo
, and
W.
Lin
, “
Simulation of shock-powder interaction using kinetic theory of granular flow
,”
Powder Technol.
273
,
133
(
2015
).
24.
T. G.
Theofanous
and
C.-H.
Chang
, “
The dynamics of dense particle clouds subjected to shock waves. II. Modeling/numerical issues and the way forward
,”
Int. J. Multiphase Flow
89
,
177
(
2017
).
25.
Z.
Huang
,
M.
Zhao
,
Y.
Xu
,
G.
Li
, and
H.
Zhang
, “
Eulerian-Lagrangian modelling of detonative combustion in two-phase gas-droplet mixtures with OpenFOAM: Validations and verifications
,”
Fuel
286
,
119402
(
2021
).
26.
H.
Zhang
,
M.
Zhao
, and
Z.
Huang
, “
Large eddy simulation of turbulent supersonic hydrogen flames with OpenFOAM
,”
Fuel
282
,
118812
(
2020
).
27.
M. R.
Baer
and
J. W.
Nunziato
, “
A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials
,”
Int. J. Multiphase Flow
12
,
861
889
(
1986
).
28.
R.
Saurel
and
R.
Abgrall
, “
A multiphase Godunov method for compressible multifluid and multiphase flows
,”
J. Comput. Phys.
150
,
425
467
(
1999
).
29.
R. W.
Houim
and
E. S.
Oran
, “
A multiphase model for compressible granular–gaseous flows: Formulation and initial tests
,”
J. Fluid Mech.
789
,
166
(
2016
).
30.
F.
Alobaid
and
B.
Epple
, “
Improvement, validation and application of CFD/DEM model to dense gas–solid flow in a fluidized bed
,”
Particuology
11
,
514
(
2013
).
31.
M. J.
Andrews
and
P. J.
O'Rourke
, “
The multiphase particle-in-cell (MP-PIC) method for dense particulate flows
,”
Int. J. Multiphase Flow
22
,
379
402
(
1996
).
32.
A.
Panchal
and
S.
Menon
, “
A hybrid Eulerian-Eulerian/Eulerian-Lagrangian method for dense-to-dilute dispersed phase flows
,”
J. Comput. Phys.
439
,
110339
(
2021
).
33.
B.
Tian
,
J.
Zeng
,
B.
Meng
,
Q.
Chen
,
X.
Guo
, and
K.
Xue
, “
Compressible multiphase particle-in-cell method (CMP-PIC) for full pattern flows of gas-particle system
,”
J. Comput. Phys.
418
,
109602
(
2020
).
34.
Y.
Xu
and
H.
Zhang
, “
Pulsating propagation and extinction of hydrogen detonations in ultrafine water sprays
,”
Combust. Flame
241
,
112086
(
2022
).
35.
Z.
Huang
,
M.
Zhao
, and
H.
Zhang
, “
Modelling n-heptane dilute spray flames in a model supersonic combustor fueled by hydrogen
,”
Fuel
264
,
116809
(
2020
).
36.
Z.
Huang
and
H.
Zhang
, “
Ignition and deflagration-to-detonation transition modes in ethylene/air mixtures behind a reflected shock
,”
Phys. Fluids
34
,
086105
(
2022
).
37.
Z. Y.
Zhou
,
S. B.
Kuang
,
K. W.
Chu
, and
A. B.
Yu
, “
Discrete particle simulation of particle–fluid flow: Model formulations and their applicability
,”
J. Fluid Mech.
661
,
482
(
2010
).
38.
W.
Sutherland
, “
The viscosity of gases and molecular force
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
36
,
507
(
2009
).
39.
W. R.
Ranz
, “
Evaporation from Drops Part I
,”
Chem. Eng. Prog.
48
(
3
),
141
146
(
1952
).
40.
J.
Capecelatro
, “
Modeling high-speed gas–particle flows relevant to spacecraft landings
,”
Int. J. Multiphase Flow
150
,
104008
(
2022
).
41.
D.
Gidaspow
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
(
Academic Press
,
1994
).
42.
M.
Parmar
,
A.
Haselbacher
, and
S.
Balachandar
, “
Improved drag correlation for spheres and application to shock-tube experiments
,”
AIAA J.
48
,
1273
(
2010
).
43.
A. S.
Sangani
,
D.
Zhang
, and
A.
Prosperetti
, “
The added mass, Basset, and viscous drag coefficients in nondilute bubbly liquids undergoing small‐amplitude oscillatory motion
,”
Phys. Fluids A
3
,
2955
(
1991
).
44.
D. M.
Snider
, “
An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows
,”
J. Comput. Phys.
170
,
523
(
2001
).
45.
R.
Garg
and
J.
Dietiker
, see https://mfix. netl. doe. gov/documentation/mfix_pic_doc. pdf for “
Documentation of open-source MFIX–PIC software for gas-solids flows
,
2013
.”
46.
S.
Harris
and
D.
Crighton
, “
Solitons, solitary waves, and voidage disturbances in gas-fluidized beds
,”
J. Fluid Mech.
266
,
243
276
(
1994
).
47.
Y.
Xu
,
M.
Zhao
, and
H.
Zhang
, “
Extinction of incident hydrogen/air detonation in fine water sprays
,”
Phys. Fluids
33
,
116109
(
2021
).
48.
Q.
Meng
,
N.
Zhao
, and
H.
Zhang
, “
On the distributions of fuel droplets and in situ vapor in rotating detonation combustion with prevaporized n-heptane sprays
,”
Phys. Fluids
33
,
043307
(
2021
).
49.
Z.
Huang
,
M. J.
Cleary
, and
H.
Zhang
, “
Application of the sparse-Lagrangian multiple mapping conditioning approach to a model supersonic combustor
,”
Phys. Fluids
32
,
105120
(
2020
).
50.
A.
Kurganov
,
S.
Noelle
, and
G.
Petrova
, “
Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations
,”
SIAM J. Sci. Comput.
23
,
707
740
(
2001
).
51.
J.
Shi
,
Y.
Xu
,
W.
Ren
, and
H.
Zhang
, “
Extinction and re-initiation of methane detonation in dilute coal particle suspensions
,” arXiv:2202.02735 (
2022
).
52.
C.
Park
,
S.
Nili
,
J. T.
Mathew
,
F.
Ouellet
,
R.
Koneru
,
N. H.
Kim
,
S.
Balachandar
, and
R. T.
Haftka
, “
Uncertainty reduction for model error detection in multiphase shock tube simulation
,”
J. Verif. Validation Uncertainty Quantif.
6
,
031004
(
2021
).
53.
D.
Ranjan
,
J.
Oakley
, and
R.
Bonazza
, “
Shock-bubble interactions
,”
Annu. Rev. Fluid Mech.
43
,
117
(
2011
).
54.
M.
Sommerfeld
, “
The unsteadiness of shock waves propagating through gas-particle mixtures
,”
Exp. Fluids
3
,
197
206
(
1985
).
55.
J. H. J.
Niederhaus
,
J. A.
Greenough
,
J. G.
Oakley
,
D.
Ranjan
,
M. H.
Anderson
, and
R.
Bonazza
, “
A computational parameter study for the three-dimensional shock–bubble interaction
,”
J. Fluid Mech.
594
,
85
(
2007
).

Supplementary Material

You do not currently have access to this content.