In a T-junction microchannel, channel geometry plays a major role that affects the physics behind droplet generation. The effect of channel width on droplet size and frequency in a T-junction microchannel is investigated in the present study. The current work is an extension of our previous work, where a model was developed to predict the size of the droplets generated in a T-junction microchannel when both the continuous and dispersed phase channels have equal widths. In the present work, we extended the model to account for the varying width ratio between the dispersed and continuous phase channels. We performed in-house experiments by varying the channel width and viscosity ratios between the fluids to study the size of the droplets generated and to validate the proposed scaling law. We further investigated the effect of channel geometry on the frequency of droplet generation in the T-junction microchannels. The experimental results show that the droplet length increases with an increase in the width of the continuous phase channel. On the other hand, the droplet production frequency decreases with an increase in the width of the continuous phase channel. With variations in the width of the dispersed phase channel, similar behavior in droplet sizes and the frequency of droplet production is observed. The analysis of this study provides new insight into the effect of channel width on the droplet length and frequency. Overall, this research intends to provide a thorough understanding of the design of microchannels based on the geometry and manipulation of droplets with varying widths.

1.
L.
Shang
,
Y.
Cheng
, and
Y.
Zhao
, “
Emerging droplet microfluidics
,”
Chem. Rev.
117
,
7964
8040
(
2017
).
2.
S.
Sohrabi
,
M. K.
Moraveji
 et al., “
Droplet microfluidics: Fundamentals and its advanced applications
,”
RSC Adv.
10
,
27560
27574
(
2020
).
3.
J.
Chen
,
D.
Chen
,
Y.
Xie
,
T.
Yuan
, and
X.
Chen
, “
Progress of microfluidics for biology and medicine
,”
Nano-Micro Lett.
5
,
66
80
(
2013
).
4.
S.
Mashaghi
,
A.
Abbaspourrad
,
D. A.
Weitz
, and
A. M.
van Oijen
, “
Droplet microfluidics: A tool for biology, chemistry and nanotechnology
,”
TrAC, Trends Anal. Chem.
82
,
118
125
(
2016
).
5.
T. S.
Kaminski
,
O.
Scheler
, and
P.
Garstecki
, “
Droplet microfluidics for microbiology: Techniques, applications and challenges
,”
Lab Chip
16
,
2168
2187
(
2016
).
6.
K. V.
Kaler
and
R.
Prakash
, “
Droplet microfluidics for chip-based diagnostics
,”
Sensors
14
,
23283
23306
(
2014
).
7.
J. I.
Park
,
A.
Saffari
,
S.
Kumar
,
A.
Günther
, and
E.
Kumacheva
, “
Microfluidic synthesis of polymer and inorganic particulate materials
,”
Annu. Rev. Mater. Res.
40
,
415
443
(
2010
).
8.
K.
Muijlwijk
,
C.
Berton-Carabin
, and
K.
Schroën
, “
Cross-flow microfluidic emulsification from a food perspective
,”
Trends Food Sci. Technol.
49
,
51
63
(
2016
).
9.
G. F.
Christopher
and
S. L.
Anna
, “
Microfluidic methods for generating continuous droplet streams
,”
J. Phys. D
40
,
R319
(
2007b
).
10.
H.
Becker
and
L. E.
Locascio
, “
Polymer microfluidic devices
,”
Talanta
56
,
267
287
(
2002
).
11.
M.
Abdelgawad
,
C.
Wu
,
W.-Y.
Chien
,
W. R.
Geddie
,
M. A.
Jewett
, and
Y.
Sun
, “
A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS)
,”
Lab Chip
11
,
545
551
(
2011
).
12.
S.
Prakash
,
B.
Acherjee
,
A. S.
Kuar
, and
S.
Mitra
, “
An experimental investigation on Nd:Yag laser microchanneling on polymethyl methacrylate submerged in water
,”
Proc. Inst. Mech. Eng., Part B
227
,
508
519
(
2013
).
13.
Y.
Chen
,
L.
Wu
, and
C.
Zhang
, “
Emulsion droplet formation in coflowing liquid streams
,”
Phys. Rev. E
87
,
013002
(
2013
).
14.
P.
Zhu
,
X.
Tang
, and
L.
Wang
, “
Droplet generation in co-flow microfluidic channels with vibration
,”
Microfluid. Nanofluid.
20
,
47
(
2016
).
15.
T.
Nisisako
,
T.
Torii
,
T.
Takahashi
, and
Y.
Takizawa
, “
Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system
,”
Adv. Mater.
18
,
1152
1156
(
2006
).
16.
T.
Thorsen
,
R. W.
Roberts
,
F. H.
Arnold
, and
S. R.
Quake
, “
Dynamic pattern formation in a vesicle-generating microfluidic device
,”
Phys. Rev. Lett.
86
,
4163
(
2001
).
17.
P.
Garstecki
,
M. J.
Fuerstman
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Formation of droplets and bubbles in a microfluidic T-junction—Scaling and mechanism of break-up
,”
Lab Chip
6
,
437
446
(
2006
).
18.
T.
Nisisako
,
T.
Torii
, and
T.
Higuchi
, “
Droplet formation in a microchannel network
,”
Lab Chip
2
,
24
26
(
2002
).
19.
S.
Van der Graaf
,
T.
Nisisako
,
C.
Schroën
,
R.
Van Der Sman
, and
R.
Boom
, “
Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel
,”
Langmuir
22
,
4144
4152
(
2006
).
20.
T.
Cubaud
and
T. G.
Mason
, “
Capillary threads and viscous droplets in square microchannels
,”
Phys. Fluids
20
,
053302
(
2008
).
21.
S.
Wu
,
J.
Chen
,
X.
Liu
, and
F.
Yao
, “
Experimental study of droplet formation in the cross-junction
,”
J. Dispersion Sci. Technol.
42
,
1233
(
2021
).
22.
X.
Chen
,
T.
Glawdel
,
N.
Cui
, and
C. L.
Ren
, “
Model of droplet generation in flow focusing generators operating in the squeezing regime
,”
Microfluid. Nanofluid.
18
,
1341
1353
(
2015
).
23.
S.
Van Loo
,
S.
Stoukatch
,
M.
Kraft
, and
T.
Gilet
, “
Droplet formation by squeezing in a microfluidic cross-junction
,”
Microfluid. Nanofluid.
20
,
146
(
2016
).
24.
J.
Husny
and
J. J.
Cooper-White
, “
The effect of elasticity on drop creation in T-shaped microchannels
,”
J. Non-Newtonian Fluid Mech.
137
,
121
136
(
2006
).
25.
S.
Mehraji
and
M.
Saadatmand
, “
Flow regime mapping for a two-phase system of aqueous alginate and water droplets in T-junction geometry
,”
Phys. Fluids
33
,
072009
(
2021
).
26.
Z.
Liu
,
J.
Zhao
,
Y.
Pang
, and
X.
Wang
, “
Generation of droplets in the T-junction with a constriction microchannel
,”
Microfluid. Nanofluid.
22
,
124
(
2018
).
27.
X.
Li
,
L.
He
,
Y.
He
,
H.
Gu
, and
M.
Liu
, “
Numerical study of droplet formation in the ordinary and modified T-junctions
,”
Phys. Fluids
31
,
082101
(
2019
).
28.
Y.
Pang
,
Q.
Yang
,
X.
Wang
, and
Z.
Liu
, “
Dripping and jetting generation mode in T-junction microchannels with contractive structures
,”
Phys. Fluids
34
,
092001
(
2022
).
29.
S.
Da Ling
,
J.
Zhang
,
Z.
Chen
,
W.
Ma
,
Y.
Du
, and
J.
Xu
, “
Generation of monodisperse micro-droplets within the stable narrowing jetting regime: Effects of viscosity and interfacial tension
,”
Microfluid. Nanofluid.
26
,
53
(
2022
).
30.
Z. Z.
Chong
,
S. H.
Tan
,
A. M.
Gañán-Calvo
,
S. B.
Tor
,
N. H.
Loh
, and
N.-T.
Nguyen
, “
Active droplet generation in microfluidics
,”
Lab Chip
16
,
35
58
(
2016
).
31.
R.
Singh
,
S.
Bahga
, and
A.
Gupta
, “
Electrohydrodynamic droplet formation in a T-junction microfluidic device
,”
J. Fluid Mech.
905
,
A29
(
2020
).
32.
P.
Zhu
and
L.
Wang
, “
Passive and active droplet generation with microfluidics: A review
,”
Lab Chip
17
,
34
75
(
2017
).
33.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
, “
Engineering flows in small devices: Microfluidics toward a lab-on-a-chip
,”
Annu. Rev. Fluid Mech.
36
,
381
411
(
2004
).
34.
J. H.
Xu
,
S.
Li
,
J.
Tan
, and
G.
Luo
, “
Correlations of droplet formation in T-junction microfluidic devices: From squeezing to dripping
,”
Microfluid. Nanofluid.
5
,
711
717
(
2008
).
35.
T.
Glawdel
,
C.
Elbuken
, and
C. L.
Ren
, “
Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations
,”
Phys. Rev. E
85
,
016322
(
2012
).
36.
J. D.
Tice
,
A. D.
Lyon
, and
R. F.
Ismagilov
, “
Effects of viscosity on droplet formation and mixing in microfluidic channels
,”
Anal. Chim. Acta
507
,
73
77
(
2004
).
37.
S. K.
Jena
,
S. S.
Bahga
, and
S.
Kondaraju
, “
Prediction of droplet sizes in a T-junction microchannel: Effect of dispersed phase inertial forces
,”
Phys. Fluids
33
,
032120
(
2021
).
38.
J.
Yao
,
F.
Lin
,
H. S.
Kim
, and
J.
Park
, “
The effect of oil viscosity on droplet generation rate and droplet size in a T-junction microfluidic droplet generator
,”
Micromachines
10
,
808
(
2019
).
39.
M.
Nekouei
and
S. A.
Vanapalli
, “
Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size
,”
Phys. Fluids
29
,
032007
(
2017
).
40.
M. P.
Boruah
,
A.
Sarker
,
P. R.
Randive
,
S.
Pati
, and
S.
Chakraborty
, “
Wettability-mediated dynamics of two-phase flow in microfluidic T-junction
,”
Phys. Fluids
30
,
122106
(
2018
).
41.
M.
De Menech
,
P.
Garstecki
,
F.
Jousse
, and
H. A.
Stone
, “
Transition from squeezing to dripping in a microfluidic T-shaped junction
,”
J. Fluid Mech.
595
,
141
161
(
2008
).
42.
G. F.
Christopher
,
N. N.
Noharuddin
,
J. A.
Taylor
, and
S. L.
Anna
, “
Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions
,”
Phys. Rev. E
78
,
036317
(
2008
).
43.
J. D.
Wehking
,
M.
Gabany
,
L.
Chew
, and
R.
Kumar
, “
Effects of viscosity, interfacial tension, and flow geometry on droplet formation in a microfluidic T-junction
,”
Microfluid. Nanofluid.
16
,
441
453
(
2014
).
44.
N.-A.
Goy
,
Z.
Denis
,
M.
Lavaud
,
A.
Grolleau
,
N.
Dufour
,
A.
Deblais
, and
U.
Delabre
, “
Surface tension measurements with a smartphone
,”
Phys. Teach.
55
,
498
499
(
2017
).
45.
T.
Glawdel
,
C.
Elbuken
, and
C. L.
Ren
, “
Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling
,”
Phys. Rev. E
85
,
016323
(
2012
).

Supplementary Material

You do not currently have access to this content.