In terms of flight conditions, the Martian atmospheric environment is undoubtedly much harsher than the Earth atmospheric environment, with extremely low air density, ultra-low Reynolds number, and raging Martian sandstorms, all of which have serious impacts on the design of Martian unmanned aerial vehicles (UAVs), especially for the design of the power system. The purpose of this paper is to study the impact of the Martian atmospheric environment on the aerodynamic performance of the propeller system. The computational fluid dynamics numerical simulation was used to study the impact of varying degrees of sand and dust accumulation on the aerodynamic performance of Martian propellers caused by Martian sandstorms and widespread dust. It was found that in the Martian atmospheric environment, the rough surface of propeller blades after sand and dust accumulation has better aerodynamic performance than the smooth surface, which is greatly different from the Earth environment; The aerodynamic characteristics of the propeller are tested in the simulated Martian atmosphere vacuum chamber environment, and the experiment has shown that the propeller has better aerodynamic performance under the condition of 8° angle of attack; under the condition of 8° angle of attack, the aerodynamic performance of the propeller is simulated by different Reynolds numbers and different Mach numbers, so as to obtain the influence of the Reynolds number and the Mach number on lift–drag characteristics under the Martian atmospheric environment, and then, the modified blead element theory suitable for the Martian atmospheric environment is derived, which provides a detailed reference for the accurate modeling of the Mars UAV. It has important guiding significance for the design of flight controller.

1.
P.
Withers
,
S.
Weiner
, and
N.
Ferreri
, “
Recovery and validation of Mars ionospheric electron density profiles from Mariner 9
,”
Earth Planet Space
67
(
194
),
194
(
2015
).
2.
B. M.
Jakosky
,
B. M.
Hynek
,
S. M.
Pelkey
,
M. T.
Mellon
et al, “
Thermophysical properties of the MER and Beagle II landing site regions on Mars
,”
J. Geophys. Res.
111
(
E8
),
E08008
, https://doi.org/10.1029/2004JE002320 (
2006
).
3.
P. L.
Read
,
S. R.
Lewis
, and
D. P.
Mulholland
, “
The physics of Martian weather and climate: A review
,”
Rep. Prog. Phys.
78
(
12
),
125901
125955
(
2015
).
4.
L. H.
Jeffery
,
T. P.
Michael
,
V.
Kerzhanovich
, and
G.
Walsh
, “
Flight test results for aerially deployed Mars balloons
,” AIAA Paper No. 2007-2626,
2007
.
5.
R. D.
Braun
,
H. S.
Wright
,
M. A.
Croom
,
J. S.
Levine
, and
D. A.
Spencer
, “
Design of the ARES Mars airplane and mission architecture
,”
J. Spacecr. Rockets
43
(
5
),
1026
1034
(
2006
).
6.
J. E.
Bluman
,
C. K.
Kang
, and
Y.
Shtessel
, “
Control of a flapping-wing micro air vehicle: Sliding-mode approach
,”
J. Guid. Control Dyn.
41
(
8
),
1223
1227
(
2018
).
7.
R.
Shrestha
,
M.
Benedict
, and
V.
Hrishikeshavan
, “
Hover performance of a small-scale helicopter rotor for flying on Mars
,”
J. Aircr.
53
(
4
),
1160
1168
(
2016
).
8.
T.
Wang
,
K.
Umemoto
,
T.
Endo
, and
F.
Matsuno
, “
Modeling and control of a quadrotor UAV equipped with a flexible arm in vertical plane
,”
IEEE Access
9
,
98476
98489
(
2021
).
9.
W. J.
Koning
,
E. A.
Romander
, and
W.
Johnson
, “
Low Reynolds number airfoil evaluation for the Mars helicopter rotor
,” in
American Helicopter Society 74th Annual Forum
,
Phoenix, AZ
,
2018
.
10.
T.
Désert
,
J.
Moschetta
, and
H.
Bézard
, “
Numerical and experimental investigation of an airfoil design for a Martian micro rotorcraft
,”
Int. J. Micro Air Veh.
10
(
3
),
262
272
(
2018
).
11.
K.
Park
,
J.
Jung
, and
S.
Jeong
, “
Multi-objective shape optimization of airfoils for Mars exploration aircraft propellers
,”
Int. J. Aeronaut. Space Sci.
24
,
9
23
(
2023
).
12.
J. H.
Xu
,
W. P.
Song
,
Z. H.
Han
, and
Z.
Zhao
, “
Effect of Mach number on high-subsonic and low-Reynolds-number flows around airfoils
,”
Int. J. Mod. Phys. B
34
(
14
),
2040112
(
2020
).
13.
K.
Kurane
,
K.
Uechi
, and
K.
Takahashi
, “
Aerodynamic characteristics of Mars airplane airfoils with control surface in propeller slipstream
,” AIAA Paper No. 2018-2058,
2018
.
14.
M.
Carreño Ruiz
,
L.
Renzulli
, and
D.
D'Ambrosio
, “
Airfoil optimization for rotors operating in the ultra-low Reynolds number regime
,”
Phys. Fluids
35
(
10
),
103603
(
2023
).
15.
Y.
Zheng
,
Y. T.
Dai
,
C.
Yang
,
Y. C.
Li
, and
Y. T.
Hu
, “
Effect of wingtip bending morphing on gust-induced aerodynamics based on fluid-structure interaction method
,”
Phys. Fluids
35
(
11
),
115124
(
2023
).
16.
J. D.
Tank
,
B. F.
Klose
,
G. B.
Jacobs
, and
G. R.
Spedding
, “
Flow transitions on a cambered airfoil at moderate Reynolds number
,”
Phys. Fluids
33
(
9
),
093105
(
2021
).
17.
M.
Anyoji
,
T.
Nonomura
,
H.
Aono
,
A.
Oyama
,
K.
Fujii
,
H.
Nagai
, and
K.
Asai
, “
Computational and experimental analysis of a high-performance airfoil under low-Reynolds-number flow condition
,”
J. Aircr.
51
(
6
),
1864
1872
(
2014
).
18.
M.
Benedict
,
J.
Winslow
,
Z.
Hasnain
, and
I.
Chopra
, “
Experimental investigation of micro air vehicle scale helicopter rotor in hover
,”
Int. J. Micro Air Veh.
7
(
3
),
231
256
(
2015
).
19.
P. J.
Kunz
, “
Aerodynamics and design for ultra-low Reynolds number flight
,” Ph.D. thesis (
Stanford University
,
Palo Alto
,
2003
).
20.
N.
Tsuzuki
,
S.
Sato
, and
A.
Takashi
, “
Conceptual design and feasibility for a miniature Mars exploration rotorcraft
,” in
Proceedings of 24th International Congress of the Aeronautical Sciences
, Yokohama, Japan,
2004
.
21.
L. A.
Young
and
E. W.
Aiken
, “
Vertical lift planetary aerial vehicles: Three planetary bodies and four conceptual design cases
,” in
Proceedings of 27th European Rotorcraft Forum, Moscow, Russia
(NTRS - NASA Technical Reports Server,
2001
), pp.
45
63
.
22.
F.
Bohorquez
,
D.
Pines
, and
P. D.
Samuel
, “
Small rotor design optimization using blade element momentum theory and hover tests
,”
J. Aircr.
47
(
1
),
268
283
(
2012
).
23.
D.
Escobar
,
I.
Chopra
, and
A.
Datta
, “
High-fidelity aeromechanical analysis of coaxial Mars helicopter
,”
J. Aircr.
58
(
3
),
609
615
(
2021
).
24.
H.
Bézard
,
T.
Désert
,
T.
Jardin
, and
J.
Moschetta
, “
Numerical and experimental aerodynamic investigation of a micro-UAV for flying on Mars
,” in
76th Annual Forum & Technology Display
, Virginia Beach, United States,
2020
.
25.
M.
Day
and
L.
Rebolledo
, “
Intermittency in wind‐driven surface alteration on Mars interpreted from wind streaks and measurements by InSight
,”
Geophys. Res. Lett.
46
(
22
),
12747
127755
, https://doi.org/10.1029/2019GL085178 (
2019
).
26.
Y. F.
Yang
,
A. L.
Han
,
J. H.
Qin
, and
Z.
Wang
, “
Spectral scattering characteristic of non-spherical mars dust particles
,”
Acta Photonica Sin.
48
(
12
),
1229001
(
2019
).
27.
L. L.
Sun
,
G. T.
Qin
, and
G. W.
Zhu
, “
Characteristic and detection of Mars dust
,”
J. Beijing Univ. Aeronaut. Astronaut.
38
(
01
),
28
32
(
2012
).
28.
J. C.
Liu
,
D. J.
Li
,
Z. G.
Zuo
,
C.
Liu
, and
H. J.
Wang
, “
Aerodynamic performance of a characteristic airfoil at low-Reynolds number and transonic flow under Mars sand-containing environment
,”
Phys. Fluids
35
(
7
),
076120
(
2023
).
29.
Y. Y.
Guo
,
W. Q.
Yang
,
Y. B.
Dong
, and
J. L.
Xuan
, “
Numerical investigation of an insect-scale flexible wing with a small amplitude flapping kinematics
,”
Phys. Fluids
34
(
8
),
081903
(
2022
).
30.
W. W.
Zhang
,
B.
Xu
,
H. T.
Zhang
,
C. L.
Xiang
,
W.
Fan
, and
Z. R.
Zhao
, “
Analysis of aerodynamic characteristics of propeller systems based on Martian atmospheric environment
,”
Drones
7
(
6
),
397
(
2023
).
31.
T.
Qin
,
S.
Wang
,
A.
Gao
et al, “
Three-dimensional analytical model for Mars atmospheric density
,”
J. Deep Space Explor.
1
(
02
),
117
122
(
2014
).
You do not currently have access to this content.