To date, with respect to water waves, researchers have studied certain systems, including a generalized Whitham–Broer–Kaup–Boussinesq–Kupershmidt system that describes, e.g., the dispersive long waves in the oceanic shallow water, which we study here. With respect to, e.g., the horizontal velocity of the water wave as well as the height of the deviation from the equilibrium position of the water, with symbolic computation, on the one hand, the system is found to pass the Painlevé test under some coefficient constraints, while on the other hand, two families of the bilinear forms and two families of the N-soliton solutions are constructed, with N as a positive integer. Related constraints are shown. Our bilinear forms and N-soliton solutions depend on the coefficients in the system.

1.
M.
Loft
,
N.
Kuhl
,
M. P.
Buckley
,
J. R.
Carpenter
,
M.
Hinze
,
F.
Veron
, and
T.
Rung
, “
Two-phase flow simulations of surface waves in wind-forced conditions
,”
Phys. Fluids
35
,
072108
(
2023
).
2.
S.
Subbotin
,
N.
Shmakova
,
V.
Kozlov
, and
E.
Ermanyuk
, “
Nonlinear regimes of inertial wave attractors generated by a precessing lid: Zonal flows and Rossby waves
,”
Phys. Fluids
35
,
074110
(
2023
).
3.
P.
Kumar
,
P.
Nandal
,
R.
Uma
, and
R. P.
Sharma
, “
Numerical simulation of modified nonlinear Schrödinger equation and turbulence generation
,”
Phys. Fluids
35
,
075138
(
2023
).
4.
X. T.
Gao
and
B.
Tian
, “
Water-wave studies on a (2 + 1)-dimensional generalized variable-coefficient Boiti—Leon—Pempinelli system
,”
Appl. Math. Lett.
128
,
107858
(
2022
).
5.
X. Y.
Gao
,
Y. J.
Guo
, and
W. R.
Shan
, “
Beholding the shallow water waves near an ocean beach or in a lake via a Boussinesq—Burgers system
,”
Chaos, Solitons Fractals
147
,
110875
(
2021
).
6.
S.
Singh
,
A.
Mukherjee
,
K.
Sakkaravarthi
, and
K.
Murugesan
, “
Higher dimensional localized and periodic wave dynamics in an integrable (2 + 1)-dimensional deep water oceanic wave model
,”
Wave Random Complex Media
33
,
78
(
2023
).
7.
X. Y.
Gao
,
Y. J.
Guo
, and
W. R.
Shan
, “
On a generalized Broer–Kaup–Kupershmidt system for the long waves in shallow water
,”
Nonlinear Dyn.
111
,
9431
(
2023
).
8.
X. T.
Gao
,
B.
Tian
,
Y.
Shen
, and
C. H.
Feng
, “
Considering the shallow water of a wide channel or an open sea through a generalized (2 + 1)-dimensional dispersive long-wave system
,”
Qual. Theory Dyn. Syst.
21
,
104
(
2022
).
9.
X. Y.
Gao
,
Y. J.
Guo
, and
W. R.
Shan
, “
Symbolically computing the shallow water via a (2 + 1)-dimensional generalized modified dispersive water-wave system: Similarity reductions, scaling and hetero-Bäcklund transformations
,”
Qual. Theory Dyn. Syst.
22
,
17
(
2023
).
10.
X. Y.
Gao
,
Y. J.
Guo
, and
W. R.
Shan
, “
On a Whitham–Broer–Kaup–like system arising in the oceanic shallow water
,”
Chin. J. Phys.
82
,
194
(
2023
).
11.
D.
Mantzavinos
and
D.
Mitsotakis
, “
Extended water wave systems of Boussinesq equations on a finite interval: Theory and numerical analysis
,”
J. Math. Pures Appl.
169
,
109
(
2023
).
12.
C. H.
Feng
,
B.
Tian
,
D. Y.
Yang
, and
X. T.
Gao
, “
Lump and hybrid solutions for a (3 + 1)-dimensional Boussinesq-type equation for the gravity waves over a water surface
,”
Chin. J. Phys.
83
,
515
(
2023
).
13.
X. Y.
Gao
,
Y. J.
Guo
, and
W. R.
Shan
, “
Thinking about the oceanic shallow water via a generalized Whitham–Broer–Kaup–Boussinesq–Kupershmidt system
,”
Chaos, Solitons Fractals
164
,
112672
(
2022
).
14.
X. Y.
Gao
,
Y. J.
Guo
, and
W. R.
Shan
, “
Looking at an open sea via a generalized (2 + 1)-dimensional dispersive long-wave system for the shallow water: Hetero-Bäcklund transformations, bilinear forms and N solitons
,”
Eur. Phys. J. Plus
135
,
689
(
2020
).
15.
E. V.
Krishnan
,
A. H.
Kara
,
S.
Kumar
, and
A.
Biswas
, “
Topological solitons, cnoidal waves and conservation laws of coupled wave equations
,”
Indian J. Phys.
87
,
1233
(
2013
).
16.
X. Y.
Gao
,
Y. J.
Guo
, and
W. R.
Shan
, “
Regarding the shallow water in an ocean via a Whitham–Broer–Kaup–like system: Hetero-Bäcklund transformations, bilinear forms and M solitons
,”
Chaos, Solitons Fractals
162
,
112486
(
2022
).
17.
A. H.
Bhrawy
,
M. A.
Abdelkawy
,
E. M.
Hilal
,
A. A.
Alshaery
, and
A.
Biswas
, “
Solitons, cnoidal waves, snoidal waves and other solutions to Whitham–Broer–Kaup system
,”
Appl. Math. Inf. Sci.
8
,
2119
(
2014
).
18.
M.
Arshad
,
A. R.
Seadawy
,
D. C.
Lu
, and
J.
Wang
, “
Travelling wave solutions of Drinfel'd-Sokolov-Wilson, Whitham–Broer–Kaup and (2 + 1)-dimensional Broer–Kaup–Kupershmit equations and their applications
,”
Chin. J. Phys.
55
,
780
(
2017
).
19.
G. B.
Whitham
, “
Variational methods and applications to water waves
,”
Proc. R. Soc. London, Ser. A
299
,
6–25
(
1967
).
20.
L. J.
Broer
, “
Approximate equations for long water waves
,”
Appl. Sci. Res.
31
,
377
(
1975
).
21.
B. A.
Kupershmidt
, “
Mathematics of dispersive water waves
,”
Commun. Math. Phys.
99
,
51
(
1985
).
22.
A. H.
Bhrawy
,
M. M.
Tharwat
, and
M. A.
Abdelkawy
, “
Integrable system modelling shallow water waves: Kaup-Boussinesq shallow water system
,”
Indian J. Phys.
87
,
665
(
2013
).
23.
C. L.
Chen
and
S. Y.
Lou
, “
Soliton excitations and periodic waves without dispersion relation in shallow water system
,”
Chaos, Solitons Fractals
16
,
27
(
2003
).
24.
X. Q.
Cao
,
Y. N.
Guo
,
S. H.
Hou
,
C. Z.
Zhang
, and
K. C.
Peng
, “
Variational principles for two kinds of coupled nonlinear equations in shallow water
,”
Symmetry
12
,
850
(
2020
).
25.
T.
Congy
,
S. K.
Ivanov
,
A. M.
Kamchatnov
, and
N.
Pavloff
, “
Evolution of initial discontinuities in the Riemann problem for the Kaup—Boussinesq equation with positive dispersion
,”
Chaos
27
,
083107
(
2017
).
26.
E.
Yomba
, “
The extended Fan's sub-equation method and its application to KdV-MKdV, BKK and variant Boussinesq equations
,”
Phys. Lett. A
336
,
463
(
2005
).
27.
L. Q.
Li
,
Y. T.
Gao
,
X.
Yu
,
G. F.
Deng
, and
C. C.
Ding
, “
Gramian solutions and solitonic interactions of a (2 + 1)-dimensional Broer–Kaup–Kupershmidt system for the shallow water
,”
Int. J. Numer. Methods Heat Fluid Flow
32
,
2282
(
2022
).
28.
J. P.
Ying
and
S. Y.
Lou
, “
Abundant coherent structures of the (2 + 1)-dimensional Broer–Kaup–Kupershmidt equation
,”
Z. Naturforsch. A
56
,
619
(
2001
).
29.
C. D.
Cheng
,
B.
Tian
,
T. Y.
Zhou
, and
Y.
Shen
, “
Wronskian solutions and Pfaffianization for a (3 + 1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili equation in a fluid or plasma
,”
Phys. Fluids
35
,
037101
(
2023
).
30.
Y.
Shen
,
B.
Tian
,
C. D.
Cheng
, and
T. Y.
Zhou
, “
Pfaffian solutions and nonlinear waves of a (3 + 1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics
,”
Phys. Fluids
35
,
025103
(
2023
).
31.
T. Y.
Zhou
,
B.
Tian
,
Y.
Shen
, and
X. T.
Gao
, “
Auto-Bäcklund transformations and soliton solutions on the nonzero background for a (3 + 1)-dimensional Korteweg—de Vries—Calogero—Bogoyavlenskii—Schiff equation in a fluid
,”
Nonlinear Dyn.
111
,
8647
(
2023
).
32.
C. D.
Cheng
,
B.
Tian
,
Y. X.
Ma
,
T. Y.
Zhou
, and
Y.
Shen
, “
Pfaffian, breather and hybrid solutions for a (2 + 1)-dimensional generalized nonlinear system in fluid mechanics and plasma physics
,”
Phys. Fluids
34
,
115132
(
2022
).
33.
J.
Tothova
and
V.
Lisy
, “
Generalized Langevin equation for solute dynamics in fluids with time-dependent friction
,”
Results Phys.
52
,
106773
(
2023
).
34.
Y. Q.
Liu
,
B.
Ren
, and
D. S.
Wang
, “
Various localised nonlinear wave interactions in the generalised Kadomtsev-Petviashvili equation
,”
East Asian J. Appl. Math.
11
,
301
(
2021
).
35.
S. J.
Chen
,
X.
,
M. G.
Li
, and
F.
Wang
, “
Derivation and simulation of the M–lump solutions to two (2+1)–dimensional nonlinear equations
,”
Phys. Scr.
96
,
095201
(
2021
).
36.
T. Y.
Zhou
,
B.
Tian
,
Y.
Shen
, and
C. D.
Cheng
, “
Lie symmetry analysis, optimal system, symmetry reductions and analytic solutions for a (2 + 1)-dimensional generalized nonlinear evolution system in a fluid or a plasma
,”
Chin. J. Phys.
84
,
343
(
2023
).
37.
T.
Mathanaranjan
,
M. S.
Hashemi
,
H.
Rezazadeh
,
L.
Akinyemi
, and
A.
Bekir
, “
Chirped optical solitons and stability analysis of the nonlinear Schrödinger equation with nonlinear chromatic dispersion
,”
Commun. Theor. Phys.
75
,
085005
(
2023
).
38.
X. H.
Wu
,
Y. T.
Gao
,
X.
Yu
, and
C. C.
Ding
, “
N-fold generalized Darboux transformation and soliton interactions for a three-wave resonant interaction system in a weakly nonlinear dispersive medium
,”
Chaos, Solitons Fractals
165
,
112786
(
2022
).
39.
X. Y.
Gao
,
Y. J.
Guo
,
W. R.
Shan
, and
T. Y.
Zhou
, “
Report on an extended three-coupled Korteweg-de Vries system
,”
Ric. Mat.
(in press) (
2023
).
40.
X. H.
Wu
,
Y. T.
Gao
,
X.
Yu
,
L. Q.
Liu
, and
C. C.
Ding
, “
Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear Schrödinger system in an optical fiber
,”
Nonlinear Dyn.
111
,
5641
(
2023
).
41.
Y.
Shen
,
B.
Tian
,
C. D.
Cheng
, and
T. Y.
Zhou
, “
N-soliton, Mth-order breather, Hth-order lump, and hybrid solutions of an extended (3 + 1)-dimensional Kadomtsev—Petviashvili equation
,”
Nonlinear Dyn.
111
,
10407
(
2023
).
42.
X. H.
Wu
and
Y. T.
Gao
, “
Generalized Darboux transformation and solitons for the Ablowitz—Ladik equation in an electrical lattice
,”
Appl. Math. Lett.
137
,
108476
(
2023
).
43.
T.
Yahl
, “
Computing Galois groups of Fano problems
,”
J. Symbolic Comput.
119
,
81
(
2023
).
44.
X. H.
Wu
,
Y. T.
Gao
,
X.
Yu
,
C. C.
Ding
,
L.
Hu
, and
L. Q.
Li
, “
Binary Darboux transformation, solitons, periodic waves and modulation instability for a nonlocal Lakshmanan-Porsezian-Daniel equation
,”
Wave Motion
114
,
103036
(
2022
).
45.
Y.
Shen
,
B.
Tian
,
T. Y.
Zhou
, and
X. T.
Gao
, “
N-fold Darboux transformation and solitonic interactions for the Kraenkel-Manna-Merle system in a saturated ferromagnetic material
,”
Nonlinear Dyn.
111
,
2641
(
2023
).
46.
X. Y.
Gao
, “
Letter to the Editor on Results Phys. 52, 106822 (2023) and beyond: In pursuit of a (3+1)-dimensional generalized nonlinear evolution system for the shallow water waves
,”
Results Phys.
54
,
107032
(
2023
).
47.
X. H.
Wu
,
Y. T.
Gao
,
X.
Yu
, and
F. Y.
Liu
, “
Generalized Darboux transformation and solitons for a Kraenkel—Manna—Merle system in a ferromagnetic saturator
,”
Nonliner Dyn.
111
,
14421
(
2023
).
48.
Y.
Shen
,
B.
Tian
,
T. Y.
Zhou
, and
C. D.
Cheng
, “
Multi-pole solitons in an inhomogeneous multi-component nonlinear optical medium
,”
Chaos, Silotons Fractals
171
,
113497
(
2023
).
49.
X. Y.
Gao
, “
Letter to the Editor on the Korteweg—de Vries—type systems inspired by Results Phys. 51, 106624 (2023) and 50, 106566 (2023)
,”
Results Phys.
53
,
106932
(
2023
).
50.
T. Y.
Zhou
and
B.
Tian
, “
Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended (3 + 1)-dimensional nonlinear Schrödinger equation in an optical fiber
,”
Appl. Math. Lett.
133
,
108280
(
2022
).
51.
R.
Hirota
,
The Direct Method in Soliton Theory
(
Cambridge University Press
,
Cambridge
,
2004
).
52.
Y.
Shen
,
B.
Tian
,
S. H.
Liu
, and
T. Y.
Zhou
, “
Studies on certain bilinear form, N-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3 + 1)-dimensional shallow water wave equation with time-dependent coefficients
,”
Nonlinear Dyn.
108
,
2447
(
2022
).
53.
X. Y.
Gao
,
Y. J.
Guo
, and
W. R.
Shan
, “
Shallow-water investigations: Bilinear auto-Bäcklund transformations for a (3 + 1)-dimensional generalized nonlinear evolution system
,”
Appl. Comput. Math.
22
,
133
(
2023
).
54.
C. D.
Cheng
,
B.
Tian
,
Y.
Shen
, and
T. Y.
Zhou
, “
Bilinear form and Pfaffian solutions for a (2 + 1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics and plasma physics
,”
Nonlinear Dyn.
111
,
6659
(
2023
).
55.
X. T.
Gao
,
B.
Tian
, and
C. H.
Feng
, “
In oceanography, acoustics and hydrodynamics: Investigations on an extended coupled (2 + 1)-dimensional Burgers system
,”
Chin. J. Phys.
77
,
2818
(
2022
).
You do not currently have access to this content.