Upper-ocean turbulent flows at horizontal length scales smaller than the deformation radius depart from geostrophic equilibrium and develop important vertical velocities, which are key to marine ecology and climatic processes. Due to their small size and fast temporal evolution, these fine scales are difficult to measure during oceanographic campaigns. Instruments such as Lagrangian drifters have provided another way to characterize these scales through the analysis of pair-dispersion evolution and have pointed out striking particle convergence events. By means of numerical simulations, we investigate such processes in a model of surface-ocean turbulence that includes ageostrophic motions. This model originates from a Rossby-number expansion of the primitive equations and reduces to the surface quasi-geostrophic model, a paradigm of submesoscale dynamics, in the limit of vanishing Rossby number. We focus on the effect of the ageostrophic dynamics on the pair-dispersion and clustering properties of Lagrangian tracer particles at the ocean surface. Our results indicate that while over long times the pair separation process is barely affected by the ageostrophic component of the velocity field, the latter is responsible for the formation of temporary particle aggregates, and the intensity of this phenomenon increases with the Rossby number. We further show that Lagrangian tracers preferentially accumulate in cyclonic frontal regions, which is in agreement with observations and other more realistic modeling studies. These findings appear interesting to improve the understanding of the turbulent transport by ocean fine scales and in light of upcoming, new high-resolution satellite data of surface velocity fields.

1.
J. C.
McWilliams
, “
Submesoscale currents in the ocean
,”
Proc. R. Soc. A
472
,
20160117
(
2016
).
2.
Z.
Zhang
,
B.
Qiu
,
P.
Klein
, and
S.
Travis
, “
The influence of geostrophic strain on oceanic ageostrophic motion and surface chlorophyll
,”
Nat. Commun.
10
,
2838
(
2019
).
3.
P.
Klein
,
G.
Lapeyre
,
L.
Siegelman
,
B.
Qiu
,
L.-L.
Fu
,
H.
Torres
et al, “
Ocean-scale interactions from space
,”
Earth Space Sci.
6
,
795
817
(
2019
).
4.
J. H.
LaCasce
, “
Statistics from Lagrangian observations
,”
Prog. Oceanogr.
77
,
1
29
(
2008
).
5.
R.
Lumpkin
and
S.
Elipot
, “
Surface drifter pair spreading in the North Atlantic
,”
J. Geophys. Res.
115
,
C12017
, https://doi.org/10.1029/2010JC006338 (
2010
).
6.
S.
Berti
,
F.
Dos Santos
,
G.
Lacorata
, and
A.
Vulpiani
, “
Lagrangian drifter dispersion in the Southwestern Atlantic ocean
,”
J. Phys. Oceanogr.
41
,
1659
1672
(
2011
).
7.
A. C.
Poje
,
T. M.
Özgökmen
,
B. L.
Lipphardt
, Jr.
,
B. K.
Haus
,
E. H.
Ryan
,
A. C.
Haza
,
G. A.
Jacobs
,
A. J. H. M.
Reniers
,
M. J.
Olascoaga
,
G.
Novelli
,
A.
Griffa
,
F. J.
Beron-Vera
,
S. S.
Chen
,
E.
Coelho
,
P. J.
Hogan
,
A. D.
Kirwan
, Jr.
,
H. S.
Huntley
, and
A. J.
Mariano
, “
Submesoscale dispersion in the vicinity of the Deepwater Horizon Spill
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
12693
12698
(
2014
).
8.
R.
Corrado
,
G.
Lacorata
,
L.
Palatella
,
R.
Santoleri
, and
E.
Zambianchi
, “
General characteristics of relative dispersion in the ocean
,”
Sci. Rep.
7
,
46291
(
2017
).
9.
E. A.
D'Asaro
,
A. Y.
Shcherbina
,
J. M.
Klymak
,
J.
Molemaker
,
G.
Novelli
,
C. M.
Guigand
,
A. C.
Haza
,
B. K.
Haus
,
E. H.
Ryan
,
G. A.
Jacobs
,
H. S.
Huntley
,
N. J. M.
Laxague
,
S.
Chen
,
F.
Judt
,
J. C.
McWilliams
,
R.
Barkan
,
A. D.
Kirwan
, Jr.
,
A. C.
Poje
, and
T. M.
Özgökmen
, “
Ocean convergence and the dispersion of flotsam
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
1162
1167
(
2018
).
10.
R.
Morrow
,
L.-L.
Fu
,
F.
Ardhuin
,
M.
Benkiran
,
B.
Chapron
,
E.
Cosme
,
F.
d'Ovidio
,
J. T.
Farrar
,
S. T.
Gille
,
G.
Lapeyre
,
P.-Y.
Le Traon
,
A.
Pascual
,
A.
Ponte
,
B.
Qiu
,
N.
Rascle
,
C.
Ubelmann
,
J.
Wang
, and
E. D.
Zaron
, “
Global observations of fine-scale ocean surface topography with the surface water and ocean topography (SWOT) mission
,”
Front. Mar. Sci.
6
,
232
(
2019
).
11.
G. K.
Vallis
,
Atmospheric and Oceanic Fluid Dynamics
(
Cambridge University Press
,
New York
,
2017
).
12.
I. M.
Held
,
R. T.
Pierrehumbert
,
S. T.
Garner
, and
K. L.
Swanson
, “
Surface quasi-geostrophic dynamics
,”
J. Fluid Mech.
282
,
1
(
1995
).
13.
G.
Lapeyre
, “
Surface quasi-geostrophy
,”
Fluids
2
,
7
(
2017
).
14.
C.
Perruche
,
P.
Rivière
,
G.
Lapeyre
,
X.
Carton
, and
P.
Pondaven
, “
Effects of surface quasi-geostrophic turbulence on phytoplankton competition and coexistence
,”
J. Mar. Res.
69
,
105
135
(
2011
).
15.
A.
Foussard
,
S.
Berti
,
X.
Perrot
, and
G.
Lapeyre
, “
Relative dispersion in generalized two-dimensional turbulence
,”
J. Fluid Mech.
821
,
358
383
(
2017
).
16.
N.
Valade
,
S.
Thalabard
, and
J.
Bec
, “
Anomalous dissipation and spontaneous stochasticity in deterministic surface quasi-geostrophic flow
,”
Ann. Henri Poincaré
(published online) (
2023
).
17.
J.
Callies
,
G.
Flierl
,
R.
Ferrari
, and
B.
Fox-Kemper
, “
The role of mixed-layer instabilities in submesoscale turbulence
,”
J. Fluid Mech.
788
,
5
(
2016
).
18.
S.
Berti
and
G.
Lapeyre
, “
Lagrangian pair dispersion in upper-ocean turbulence in the presence of mixed-layer instabilities
,”
Phys. Fluids
33
,
036603
(
2021
).
19.
D. L.
Rudnick
, “
On the skewness of vorticity in the upper ocean
,”
Geophys. Res. Lett.
28
,
2045
, https://doi.org/10.1029/2000GL012265 (
2001
).
20.
G.
Roullet
and
P.
Klein
, “
Cyclone-anticyclone asymmetry in geophysical turbulence
,”
Phys. Rev. Lett.
104
,
218501
(
2010
).
21.
A. Y.
Shcherbina
,
E. A.
D'Asaro
,
C. M.
Lee
,
J. M.
Klymak
,
M. J.
Molemaker
, and
J. C.
McWilliams
, “
Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field
,”
Geophys. Res. Lett.
40
,
4706
, https://doi.org/10.1002/grl.50919 (
2013
).
22.
H. S.
Huntley
,
B. L.
Lipphardt
, Jr.
,
G.
Jacobs
, and
A. D.
Kirwan
, Jr.
, “
Clusters, deformation, and dilation: Diagnostics for material accumulation regions
,”
J. Geophys. Res.
120
,
6622
6636
, https://doi.org/10.1002/2015JC011036 (
2015
).
23.
G. A.
Jacobs
,
H. S.
Huntley
,
A. D.
Kirwan
, Jr.
,
B. L.
Lipphardt
, Jr.
,
T.
Campbell
,
T.
Smith
,
K.
Edwards
, and
B.
Bartels
, “
Ocean processes underlying surface clustering
,”
J. Geophys. Res.
121
,
180
197
, https://doi.org/10.1002/2015JC011140 (
2016
).
24.
M.
Berta
,
A.
Griffa
,
A. C.
Haza
,
J.
Horstmann
,
H. S.
Huntley
,
R.
Ibrahim
,
B.
Lund
,
T. M.
Özgökmen
, and
A. C.
Poje
, “
Submesoscale kinematic properties in summer and winter surface flows in the Northern Gulf of Mexico
,”
J. Geophys. Res.
125
,
e2020JC016085
, https://doi.org/10.1029/2020JC016085 (
2020
).
25.
D. J.
Muraki
,
C.
Snyder
, and
R.
Rotunno
, “
The next-order corrections to quasigeostrophic theory
,”
J. Atmos. Sci.
56
,
1547
(
1999
).
26.
J. B.
Weiss
, “
Point-vortex dynamics in three-dimensional ageostrophic balanced flows
,”
J. Fluid Mech.
936
,
A19
(
2022
).
27.
G. J.
Hakim
,
C.
Snyder
, and
D. J.
Muraki
, “
A new surface model for cyclone–anticyclone asymmetry
,”
J. Atmos. Sci.
59
,
2405
(
2002
).
28.
F.
Ragone
and
G.
Badin
, “
A study of surface semi-geostrophic turbulence: Freely decaying dynamics
,”
J. Fluid Mech.
792
,
740
774
(
2016
).
29.
K. S.
Smith
,
G.
Bocaletti
,
C. C.
Henning
,
I. N.
Marinov
,
C. Y.
Tam
,
I. M.
Held
, and
G. K.
Vallis
, “
Turbulent diffusion in the geostrophic inverse cascade
,”
J. Fluid Mech.
469
,
13
48
(
2002
).
30.
S.
Berti
and
G.
Lapeyre
, “
Lagrangian reconstructions of temperature and velocities at submesoscales
,”
Ocean Model.
76
,
59
71
(
2014
).
31.
A.
Celani
,
M.
Cencini
,
A.
Mazzino
, and
M.
Vergassola
, “
Active and passive fields face to face
,”
New J. Phys.
6
,
72
(
2004
).
32.
G.
Lapeyre
,
P.
Klein
, and
B. L.
Hua
, “
Oceanic restratification forced by surface frontogenesis
,”
J. Phys. Oceanogr.
36
,
1577
1590
(
2006
).
33.
W. K.
Dewar
and
G. R.
Flierl
, “
Some effects of the wind on rings
,”
J. Phys. Oceanogr.
17
,
1653
1667
(
1987
).
34.
L.
Zavala Sansón
,
I.
García-Martínez
, and
J.
Sheinbaum
, “
Nonlinear surface Ekman effects on cyclonic and anticyclonic vortices
,”
J. Fluid Mech.
971
,
A35
(
2023
).
35.
A.
Mahadevan
and
A.
Tandon
, “
An analysis of mechanisms for submesoscale vertical motion at ocean fronts
,”
Ocean Model.
14
,
241
256
(
2006
).
36.
G. J.
Hakim
and
A. K.
Canavan
, “
Observed cyclone–anticyclone tropopause vortex asymmetries
,”
J. Atmos. Sci.
62
,
231
240
(
2005
).
37.
B. L.
Hua
, “
The conservation of potential vorticity along Lagrangian trajectories in simulations of eddy-driven flows
,”
J. Phys. Oceanogr.
24
,
498
508
(
1994
).
38.
N.
Zouari
and
A.
Babiano
, “
Expériences numériques Lagrangiennes à partir de modèles eulériens
,”
Atmos.–Ocean
28
,
345
364
(
1990
).
39.
V.
Artale
,
G.
Boffetta
,
A.
Celani
,
M.
Cencini
, and
A.
Vulpiani
, “
Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient
,”
Phys. Fluids A
9
,
3162
3171
(
1997
).
40.
M.
Cencini
and
A.
Vulpiani
, “
Finite size Lyapunov exponent: Review on applications
,”
J. Phys. A: Math. Theor.
46
,
254019
(
2013
).
41.
J. H.
LaCasce
, “
Relative displacement probability distribution functions from balloons and drifters
,”
J. Mar. Res.
68
,
433
457
(
2010
).
42.
J. H.
LaCasce
and
T.
Meunier
, “
Relative dispersion with finite inertial ranges
,”
J. Fluid Mech.
932
,
A39
(
2022
).
43.
F. J.
Beron-Vera
and
J. H.
LaCasce
, “
Statistics of simulated and observed pair separations in the Gulf of Mexico
,”
J. Fluid Mech.
46
,
2183
2199
(
2016
).
44.
L. Z.
Sansón
,
P.
Pérez-Brunius
, and
J.
Sheinbaum
, “
Surface relative dispersion in the Southwestern Gulf of Mexico
,”
J. Phys. Oceanogr.
47
,
387
403
(
2017
).
45.
A.
Dhanagare
,
S.
Musacchio
, and
D.
Vincenzi
, “
Weak-strong clustering transition in renewing compressible flows
,”
J. Fluid Mech.
761
,
431
442
(
2014
).
46.
G.
Boffetta
,
J.
Davoudi
,
B.
Eckhardt
, and
J.
Schumacher
, “
Lagrangian tracers on a surface flow: The role of time correlations
,”
Phys. Rev. Lett.
93
,
134501
(
2004
).
47.
R.
Monchaux
,
M.
Bourgoin
, and
A.
Cartellier
, “
Preferential concentration of heavy particles: A Voronoï analysis
,”
Phys. Fluids
22
,
103304
(
2010
).
48.
Y.
Tagawa
,
J. M.
Mercado
,
V. N.
Prakash
,
E.
Calzavarini
,
C.
Sun
, and
D.
Lohse
, “
Three-dimensional Lagrangian Voronoï analysis for clustering of particles and bubbles in turbulence
,”
J. Fluid Mech.
693
,
201
215
(
2012
).
49.
A.
Okabe
,
B.
Boots
,
K.
Sugihara
, and
S. N.
Chiu
,
Spatial Tesselations
(
Wiley
,
New York
,
2000
).
50.
J.-S.
Ferenc
and
Z.
Néda
, “
On the size distribution of Poisson Voronoï cells
,”
Physica A
385
,
518
526
(
2007
).
51.
D.
Elhmaïdi
,
A.
Provenzale
, and
A.
Babiano
, “
Elementary topology of two-dimensional turbulence from a Lagrangian viewpoint and single-particle dispersion
,”
J. Fluid Mech.
257
,
533
558
(
1993
).
52.
P.
Grassberger
and
I.
Procaccia
, “
Characterization of strange attractors
,”
Phys. Rev. Lett.
50
,
346
349
(
1983
).
53.
A.
Okubo
, “
Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences
,”
Deep-Sea Res.
17
,
445
454
(
1970
).
54.
J.
Weiss
, “
The dynamics of enstrophy transfer in two-dimensional hydrodynamics
,”
Physica D
48
,
273
294
(
1991
).
55.
G.
Lapeyre
,
B. L.
Hua
, and
P.
Klein
, “
Dynamics of orientation of gradients of active and passive scalars in two-dimensional turbulence
,”
Phys. Fluids A
13
,
251
264
(
2001
).
56.
P.
Klein
,
B. L.
Hua
, and
G.
Lapeyre
, “
Alignment of tracer gradient vectors in 2D turbulence
,”
Physica D
146
,
246
260
(
2000
).
57.
G.
Lapeyre
,
P.
Klein
, and
B. L.
Hua
, “
Does the tracer gradient vector align with the strain eigenvectors in 2-D turbulence?
,”
Phys. Fluids A
11
,
3729
3737
(
1999
).
58.
D.
Balwada
,
Q.
Xiao
,
S.
Smith
,
R.
Abernathey
, and
A. R.
Gray
, “
Vertical fluxes conditioned on vorticity and strain reveal submesoscale ventilation
,”
J. Phys. Oceanogr.
51
,
2883
2901
(
2021
).
59.
L.
Wang
,
J.
Gula
,
J.
Collin
, and
L.
Mémery
, “
Effects of mesoscale dynamics on the path of fast-sinking particles to the deep ocean: A modeling study
,”
J. Geophys. Res.
127
,
e2022JC018799
, https://doi.org/10.1029/2022JC018799 (
2022
).
60.
C.
Vic
,
S.
Hascoët
,
J.
Gula
,
T.
Huck
, and
C.
Maes
, “
Oceanic mesoscale cyclones cluster surface Lagrangian material
,”
Geophys. Res. Lett.
49
,
e2021GL097488
, https://doi.org/10.1029/2021GL097488 (
2022
).
61.
P.
Klein
,
B. L.
Hua
,
G.
Lapeyre
,
X.
Capet
,
S.
LeGentil
, and
H.
Sasaki
, “
Upper ocean turbulence from high-resolution 3D simulations
,”
J. Phys. Oceanogr.
38
,
1748
1763
(
2008
).
62.
X.
Capet
,
J. C.
McWilliams
,
M.
Molemaker
, and
A.
Shchepetkin
, “
Mesoscale to submesoscale transition in the California current system. Part I: Flow structure, eddy flux and observational tests
,”
J. Phys. Oceanogr.
38
,
29
43
(
2008
).
63.
D.
Balwada
,
K. S.
Smith
, and
R.
Abernathey
, “
Submesoscale vertical velocities enhance tracer subduction in an idealized Antarctic Circumpolar Current
,”
Geophys. Res. Lett.
45
,
9790
9802
, https://doi.org/10.1029/2018GL079244 (
2018
).
64.
V.
Onink
,
D.
Wichmann
,
P.
Delandmeter
, and
E.
van Sebille
, “
The role of Ekman currents, Geostrophy, and Stokes drift in the accumulation of floating microplastic
,”
J. Geophys. Res.
124
,
1474
1490
, https://doi.org/10.1029/2018JC014547 (
2019
).
65.
F. J.
Beron-Vera
,
M. J.
Olascoaga
, and
P.
Miron
, “
Building a Maxey-Riley framework for surface ocean inertial particle dynamics
,”
Phys. Fluids
31
,
096602
(
2019
).
You do not currently have access to this content.