The multi-medium fluid flow around a supersonic sea-skimming flight is featured by the detached/attached shock wave, separation shock wave, and the reflected wave from the free surface. The complex wave structure and high nonlinearity pose a great challenge in accurate and stable numerical simulation. In this paper, a numerical model based on the high-order Runge–Kutta discontinuous Galerkin method is established to resolve the above problem. Based on the fact that the dimensionless vertical velocity is small, the air–water interface is linearized and a modified flux scheme is proposed to simplify the treatment of the multi-medium problem. A block-based adaptive mesh refinement scheme is adopted to capture the complex wave structure with the new nodes projected on the curved boundary. Finally, the numerical simulation of supersonic sea-skimming flight of the National Advisory Committee for Aeronautics 0012 airfoil is carried out by using the above-mentioned simplified numerical model based on the scheme of partition solution. The results show that the model can perform high-resolution simulations for the shock wave structure in various scenes. Meanwhile, the Mach number and distance between the airfoil and free surface are important factors affecting the structural characteristics of the shock wave systems and the airfoil loading characteristics. When the reflected shock wave acts on the airfoil's lower boundary, there will be a positive moment effect to make the airfoil dive, and the occurrence of this dangerous scene should be avoided. The relevant conclusions obtained can provide a reference for further research and engineering design.

1.
Z. H.
Li
,
J.
Liang
,
Z. H.
Li
,
H. Y.
Li
,
J. L.
Wu
,
J. W.
Dai
, and
Z. G.
Tang
, “
Simulation methods of aerodynamics covering various flow regimes and applications to aerodynamic characteristics of re-entry spacecraft module
,”
Acta Aerodyn. Sin.
36
,
826
847
(
2018
) (in Chinese).
2.
B.
Wu
,
J. M.
Fu
,
S.
Hu
,
T. X.
Cai
,
R.
Bao
,
F.
Xie
, and
Z. W.
Wei
, “
Experimental study on interference characteristics during aft supersonic ejection of a missile
,”
Phys. Gases
7
,
74
84
(
2022
) (in Chinese).
3.
Y. K.
Huang
,
Z. H.
Yao
,
Z. X.
Zhu
,
Q.
Zheng
,
D.
Zhao
, and
X. M.
He
, “
Inlet static pressure ratio effect on vortex structure downstream of the flameholder in subsonic-supersonic mixing flow
,”
Phys. Fluids
35
,
095143
(
2023
).
4.
A.
Chaudhuri
,
A.
Hadjadj
, and
A.
Chinnayya
, “
On the use of immersed boundary methods for shock/obstacle interactions
,”
J. Comput. Phys.
230
,
1731
(
2011
).
5.
O.
Boiron
,
G.
Chiavassa
, and
R.
Donat
, “
A high-resolution penalization method for large Mach number flows in the presence of obstacles
,”
Computers Fluids
38
,
703
(
2009
).
6.
H.
Luo
,
J. D.
Baum
, and
R.
Löhner
, “
On the computation of multi-material flows using ALE formulation
,”
J. Comput. Phys.
194
,
304
(
2004
).
7.
L. B.
Yang
, “
An application and study of multi-material flows on unstructured moving grids
,” Master's thesis (
Nanjing University of Science & Technology
,
2006
) (in Chinese).
8.
Z.
Murphree
,
K.
Yuceil
,
N.
Clemens
, and
D.
Dolling
, “
Experimental studies of transitional boundary layer shock wave interactions
,” AIAA Paper No. 2006-326,
2006
.
9.
P. C.
Quan
,
G.
Wang
,
X. W.
Xu
,
K.
Zhu
, and
Y. G.
Yang
, “
Experimental investigation on effects of herringbone riblets on shock wave/boundary layer interactions of a compression ramp at Mach 3
,”
Phys. Fluids
35
,
066131
(
2023
).
10.
D. D.
Gang
,
S. H.
Yi
,
Z.
Chen
,
Y.
Wu
, and
X. G.
Lu
, “
Fine structures investigation of supersonic flow over the quadrate protuberance mounted on a flat plate
,” in
9th National Conference on Experimental Fluid Mechanics
(College of Aerospace Science and Engineering, National University of Defense Technology,
2013
), pp.
14
17
(in Chinese).
11.
D. D.
Gang
,
S. H.
Yi
,
Q.
Mi
, and
H. B.
Niu
, “
Experiment on interaction between supersonic turbulent boundary layer and cylinder
,”
Acta Aeronaut. Astronaut. Sin.
43
,
124
131
(
2022
) (in Chinese).
12.
J. H.
Wen
,
Q. C.
Wang
,
F.
Wei
,
J. C.
Lin
,
Y. M.
Zhou
, and
X.
Luo
, “
Response of a supersonic turbulent boundary layer to different streamwise adverse pressure gradients
,”
Phys. Fluids
35
,
095114
(
2023
).
13.
Y. Y.
Zhou
,
Y. L.
Zhao
,
G.
He
,
Y. X.
Zhao
, and
P. Y.
Gao
, “
Study on the separation in the shock wave/boundary layer interaction induced by a curved fin
,”
Phys. Fluids
35
,
076106
(
2023
).
14.
S. M.
Li
,
A. M.
Zhang
,
Q. X.
Wang
, and
S.
Zhang
, “
The jet characteristics of bubbles near mixed boundaries
,”
Phys. Fluids
31
,
107105
(
2019
).
15.
Z. L.
Tian
,
A. M.
Zhang
,
Y. L.
Liu
, and
S. P.
Wang
, “
Transient fluid-solid interaction with the improved penalty immersed boundary method
,”
Ocean Eng.
236
,
109537
(
2021
).
16.
W. T.
Liu
,
A. M.
Zhang
,
X. H.
Miao
,
F. R.
Ming
, and
Y. L.
Liu
, “
Investigation of hydrodynamics of water impact and tail slamming of high-speed water entry with a novel immersed boundary method
,”
J. Fluid Mech.
958
,
A42
(
2023
).
17.
J.
Liu
,
N.
Zhao
, and
O.
Hu
, “
The ghost cell method and its applications for inviscid compressible flow on adaptive tree cartesian grids
,”
Adv. Appl. Math. Mech.
1
,
664
682
(
2009
).
18.
Z. W.
Shen
,
N.
Zhao
, and
O.
Hu
, “
Numerical research of Cartesian based ghost cell method for compressible viscous flows
,”
Acta Aerodyn. Sin.
32
,
748
754
(
2014
) (in Chinese).
19.
T. S. B.
Quang
,
L. F.
Yew
,
L. Q.
Tuyen
, and
L. D.
Vinh
, “
Lattice Boltzmann Method for high Reynolds number compressible flow
,”
Comput. Fluids
249
,
105701
(
2022
).
20.
S.
Boccelli
,
P.
Parodi
,
T. E.
Magin
, and
J. G.
McDonald
, “
Modeling high-Mach-number rarefied crossflows past a flat plate using the maximum-entropy moment method
,”
Phys. Fluids
35
,
086102
(
2023
).
21.
Z. J.
Wang
and
Y.
Sun
, “
Curvature-based wall boundary condition for the Euler equations on unstructured grids
,”
AIAA J.
41
,
27
33
(
2003
).
22.
L.
Krivodonova
and
M.
Berger
, “
High-order accurate implementation of solid wall boundary conditions in curved geometries
,”
J. Comput. Phys.
211
,
492
(
2006
).
23.
A.
Mohammadi
and
M. H.
Djavareshkian
, “
Modified advection upstream splitting method: Revolutionizing accuracy and convergence speed in low-Mach flows
,”
Phys. Fluids
35
,
106114
(
2023
).
24.
D. G.
Wang
,
G. L.
Han
,
M. K.
Liu
, and
Z. L.
Jiang
, “
Numerical investigation on unsteady interaction of oblique/bow shock during rotation based on non-inertial coordinate system
,”
Phys. Fluids
34
,
121703
(
2022
).
25.
M.
Yu
,
D.
Sun
,
Q. Q.
Zhou
,
P. X.
Liu
, and
X. X.
Yuan
, “
Coherent structures and turbulent model refinement in oblique shock/hypersonic turbulent boundary layer interactions
,”
Phys. Fluids
35
,
086125
(
2023
).
26.
I. W.
Kokkinakis
,
D.
Drikakis
,
S. M.
Spottswood
,
K. R.
Brouwer
, and
Z. B.
Riley
, “
High-speed shock-boundary-layer interaction over deformed surfaces
,”
Phys. Fluids
35
,
106109
(
2023
).
27.
D. G.
Wang
,
G. L.
Han
,
M. K.
Liu
, and
Z. L.
Jiang
, “
Numerical investigation of unsteady aerodynamic characteristics induced by the interaction of oblique/bow shock waves during rotation
,”
Phys. Fluids
35
,
086124
(
2023
).
28.
K.
Zhu
,
F.
Xie
,
G.
Wang
,
Y. C.
Hu
,
Y. G.
Yang
,
M. B.
Sun
, and
W. D.
Liu
, “
Separation characteristics of shock wave/turbulent boundary layer interaction under the effect of a transverse jet
,”
Phys. Fluids
35
,
055142
(
2023
).
29.
I. W.
Kokkinakis
,
G.
Khujadze
,
D.
Drikakis
, and
S. M.
Spottswood
, “
Wavelet analysis of supersonic shock-boundary-layer interaction
,”
Phys. Fluids
35
,
066106
(
2023
).
30.
J. C.
Liu
,
D. Y.
Li
,
Z. G.
Zuo
,
C.
Liu
, and
H. J.
Wang
, “
Aerodynamic performance of a characteristic airfoil at low-Reynolds number and transonic flow under mars sand-containing environment
,”
Phys. Fluids
35
,
076120
(
2023
).
31.
J. T.
Han
,
Y.
Zhang
,
S. Y.
Li
,
W. R.
Hong
, and
D. Z.
Wu
, “
On the reduction of the noise in a low-pressure turbine cascade associated with the wavy leading edge
,”
Phys. Fluids
35
,
095103
(
2023
).
32.
C. S.
Chou
,
C. W.
Shu
, and
Y.
Xing
, “
Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media
,”
J. Comput. Phys.
272
,
88
(
2014
).
33.
Y. L.
Liu
,
C. W.
Shu
, and
A. M.
Zhang
, “
Weighted ghost fluid discontinuous Galerkin method for two-medium problems
,”
J. Comput. Phys.
426
,
109956
(
2021
).
34.
L.
Ge
,
A. M.
Zhang
, and
S. P.
Wang
, “
Investigation of underwater explosion near composite structures using a combined RKDG-FEM approach
,”
J. Comput. Phys.
404
,
109113
(
2020
).
35.
A. M.
Zhang
,
S. M.
Li
,
P.
Cui
,
S.
Li
, and
Y. L.
Liu
, “
A unified theory for bubble dynamics
,”
Phys. Fluids
35
,
033323
(
2023
).
36.
S. M.
Li
,
A. M.
Zhang
,
P.
Cui
,
S.
Li
, and
Y. L.
Liu
, “
Vertically neutral collapse of a pulsating bubble at the corner of a free surface and a rigid wall
,”
J. Fluid Mech.
962
,
A28
(
2023
).
37.
J.
Liu
,
J.
Qiu
,
O.
Hu
,
N.
Zhao
,
M.
Goman
, and
X.
Li
, “
Adaptive Runge-Kutta discontinuous Galerkin method for complex geometry problems on Cartesian grid
,”
Int. J. Numer. Methods Fluids
73
,
847
(
2013
).
38.
T. T.
Wang
,
H. Q.
Lyu
, and
W.
An
, “
Immersed boundary method based on high-order discontinuous Galerkin method
,”
Acta Aerodyn. Sin.
41
,
96
(
2023
) (in Chinese).
39.
R.
Hartmann
and
P.
Houston
, “
Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations
,”
J. Comput. Phys.
183
,
508
(
2002
).
40.
C. M.
Klaij
,
J. J.
van der Vegt
, and
H.
van der Ven
, “
Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations
,”
J. Comput. Phys.
217
,
589
(
2006
).
41.
A.
Papoutsakis
,
S. S.
Sazhin
,
S.
Begg
,
I.
Danaila
, and
F.
Luddens
, “
An efficient Adaptive Mesh Refinement (AMR) algorithm for the Discontinuous Galerkin method: Applications for the computation of compressible two-phase flows
,”
J. Comput. Phys.
363
,
399
(
2018
).
42.
M. J.
Ivings
,
D. M.
Causon
, and
E. F.
Toro
, “
On Riemann solvers for compressible liquids
,”
Int. J. Numer. Methods Fluids
28
,
395
(
1998
).
43.
B.
Cockburn
and
C. W.
Shu
, “
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws
II: General framework,” Math. Comput.
52
,
411
(
1989
).
44.
B.
Cockburn
,
S. Y.
Lin
, and
C. W.
Shu
, “
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems
,”
J. Comput. Phys.
84
,
90
(
1989
).
45.
B.
Cockburn
,
S.
Hou
, and
C. W.
Shu
, “
The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws
IV: Multidimensional case,” Math. Comput.
54
,
545
(
1990
).
46.
B.
Cockburn
and
C. W.
Shu
, “
The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems
,”
J. Comput. Phys.
141
,
199
224
(
1998
).
47.
S.
Gottlieb
,
C. W.
Shu
, and
E.
Tadmor
, “
Strong stability-preserving high-order time discretization methods
,”
SIAM Rev.
43
,
89
(
2001
).
48.
J.
Liu
,
J.
Qiu
,
M.
Goman
,
X.
Li
, and
M.
Liu
, “
Positivity-preserving Runge-Kutta discontinuous Galerkin method on adaptive Cartesian grid for strong moving shock
,”
Numer. Math.: Theory, Methods Appl.
9
,
87
(
2016
).
49.
Y.
Cheng
, “
A comparison of limiters for Runge-Kutta discontinuous Galerkin methods
,” Master's thesis (
Nanjing University
,
2011
) (in Chinese).
50.
J.
Zhu
,
X.
Zhong
,
C. W.
Shu
, and
J.
Qiu
, “
Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes
,”
J. Comput. Phys.
248
,
200
(
2013
).
51.
G.
Fu
and
C. W.
Shu
, “
A new troubled-cell indicator for discontinuous Galerkin methods for hyperbolic conservation laws
,”
J. Comput. Phys.
347
,
305
(
2017
).
52.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
(
Springer Science & Business Media
,
2013
).
53.
Z. L.
Tian
,
A. M.
Zhang
,
Y. L.
Liu
, and
L. B.
Tao
, “
A new 3-D multi-fluid model with the application in bubble dynamics using the adaptive mesh refinement
,”
Ocean Eng.
230
,
108989
(
2021
).
54.
Y. X.
Peng
,
A. M.
Zhang
,
B.
Xue
, and
S. B.
Li
, “
Numerical investigation of ship structure damage subject to strong impact using a 3D meshless SPH-RKPM method
,”
Sci. Sin. Phys.: Mech. Astron.
51
,
124614
(
2021
) (in Chinese).
55.
Y. L.
Liu
,
P. P.
Wang
,
S. P.
Wang
, and
A. M.
Zhang
, “
Numerical analysis of transient fluid-structure interaction of warship impact damage caused by underwater explosion using the FSLAB
,”
Chin. J. Ship Res.
17
,
228
240
(
2022
) (in Chinese).
56.
A. M.
Zhang
,
F. R.
Ming
,
Y. L.
Liu
,
S.
Li
, and
S. P.
Wang
, “
Review of research on underwater explosion related to load characteristics and ship damage and protection
,”
Chin. J. Ship Res.
18
,
139
154
(
2023
) (in Chinese).
You do not currently have access to this content.