The effectiveness of the enhanced deep super-resolution network (EDSR), which is a super-resolution technique based on the deep convolutional neural network, is investigated for the improvement of spatial resolution during a background-orientated schlieren (BOS) analysis, and its suitable training process in the EDSR method is clarified. Consequently, a training dataset consisting of the simple dot patterns leads to a better image quality due to super-resolution because the image captured in the BOS measurement shows the similar dot patterns. When the image is enlarged at a large magnification ratio, it is important to adjust an image size in the training dataset individually for each magnification ratio, thereby obtaining a good estimation accuracy of the pixel displacement in the BOS analysis. A measurement error is improved by 62% compared with that of the Bicubic method, which is a classical spatial resolution improvement technique at the magnification ratio of 8. The present result shows that the EDSR method with the best training conditions provides a reasonable pixel displacement vector field up to the magnification ratio of 8 for the BOS analysis; however, its effectiveness depends on flow structure.

1.
T.
Ukai
,
A.
Russell
,
H.
Zare-Behtash
, and
K.
Kontis
, “
Temporal variation of the spatial density distribution above a nanosecond pulsed dielectric barrier discharge plasma actuator in quiescent air
,”
Phys. Fluids
30
,
116106
(
2018
).
2.
H.
Takano
,
D.
Kamikihara
,
D.
Ono
,
S.
Nakao
,
H.
Yamamoto
, and
Y.
Miyazato
, “
Three-dimensional rainbow schlieren measurements in underexpanded sonic jets from axisymmetric convergent nozzles
,”
J. Therm. Sci.
25
(
1
),
78
83
(
2016
).
3.
G. S.
Settles
,
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media
(
Springer
,
2001
).
4.
S.
Ichihara
,
T.
Shimazaki
, and
Y.
Tagawa
, “
Background-oriented schlieren technique with vector tomography for measurement of axisymmetric pressure fields of laser‐induced underwater shock waves
,”
Exp. Fluids
63
,
182
(
2022
).
5.
J. T.
Heineck
,
D. W.
Banks
,
N. T.
Smith
,
E. T.
Schairer
,
P. S.
Bean
, and
T.
Robillos
, “
Background-oriented schlieren imaging of supersonic aircraft in flight
,”
AIAA J.
59
(
1
),
11
(
2021
).
6.
K.
Hayasaka
and
Y.
Tagawa
, “
Mobile visualization of density fields using smartphone background‐oriented schlieren
,”
Exp. Fluids
60
,
171
(
2019
).
7.
M.
Raffel
, “
Background-oriented schlieren (BOS) techniques
,”
Exp. Fluids
56
,
60
(
2015
).
8.
M. J.
Hargather
,
M. J.
Lawson
, and
G. S.
Settles
, “
Seedless velocimetry measurements by schlieren image velocimetry
,”
AIAA J.
49
(
3
),
611
(
2011
).
9.
D. R.
Jonassen
,
G. S.
Settles
, and
M. D.
Tronosky
, “
Schlieren “PIV” for turbulent flows
,”
Opt. Laser Eng.
44
,
190
207
(
2006
).
10.
S.
Biswas
and
L.
Qiao
, “
A comprehensive statistical investigation of schlieren image velocimetry (SIV) using high-velocity helium jet
,”
Exp. Fluids
58
,
18
(
2017
).
11.
E.
Arnaud
,
E.
Memin
,
R.
Sosa
, and
G.
Artana
, “
A fluid motion estimator for schlieren image velocimetry
,” in
Computer Vision ECCV 2006
, Lecture Notes in Computer Science Vol. 3951 (
Springer
,
2006
), pp.
198
210
.
12.
Q.
Wang
,
Y.
Wu
,
H. T.
Cheng
,
X. H.
Mei
, and
C. Y.
Zhao
, “
A schlieren motion estimation method for seedless velocimetry
,”
Exp. Therm. Fluid Sci.
109
,
109880
(
2019
).
13.
T.
Ukai
, “
Quantitative investigations of a schlieren velocimetry technique by a schlieren motion estimation (SME) method
,”
Phys. Fluids
34
,
076113
(
2022
).
14.
K.
Hayasaka
,
Y.
Tagawa
,
T.
Liu
, and
M.
Kameda
, “
Optical-flow-based background-oriented schlieren technique for measuring a laser-induced underwater shock wave
,”
Exp. Fluids
57
,
179
(
2016
).
15.
C. Y.
Yang
,
C.
Ma
, and
M. H.
Yang
, “
Single-image super-resolution: A benchmark
,” in
Conference Proceedings of European Conference on Computer Vision
, Lecture Notes in Computer Science Vol. 8692 (
Springer
,
2014
), pp.
372
386
.
16.
J.
Yang
,
J.
Wright
,
T.
Huang
, and
Y.
Ma
, “
Image super-resolution as sparse representation of raw image patches
,” in
IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2008
), pp.
1
8
.
17.
C.
Dong
,
C. C.
Loy
,
K.
He
, and
X.
Tang
, “
Image super-resolution using deep convolutional networks
,”
IEEE Trans. Pattern Anal. Mach. Intell.
38
(
2
),
295
307
(
2016
).
18.
J.
Yang
,
J.
Wright
,
T. S.
Huang
, and
Y.
Ma
, “
Image super-resolution via sparse representation
,”
IEEE Trans. Image Process.
19
(
11
),
2861
2873
(
2010
).
19.
R.
Timofte
,
V. D.
Smet
, and
L. V.
Gool
, “
A+: Adjusted anchored neighborhood regression for fast super-resolution
,” in
Conference Proceedings of Asian Conference on Computer Vision
, Lecture Notes in Computer Science Vol. 9006 (
Springer
,
2014
), pp.
111
126
.
20.
J.
Kim
,
J. K.
Lee
, and
K. M.
Lee
, “
Accurate image super-resolution using very deep convolutional networks
,” in
IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2016
), pp.
1646
1654
.
21.
J.
Kim
,
J. K.
Lee
, and
K. M.
Lee
, “
Deeply-recursive convolutional network for image super-resolution
,” in
IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2016
), pp.
1637
1645
.
22.
B.
Lim
,
S.
Son
,
H.
Kim
,
S.
Nah
, and
K. M.
Lee
, “
Enhanced deep residual networks for single image super-resolution
,” in
IEEE Conference on Computer Vision and Pattern Recognition Workshops
(
IEEE
,
2017
), pp.
1132
1140
.
23.
M.
Ciolino
,
D.
Noever
, and
J.
Kalin
, “
Training set effect on super resolution for automated target recognition
,”
SPIE
11394
,
113940P
(
2020
).
24.
L. L.
Theis
,
F.
Huszar
,
J.
Caballero
,
A.
Cunningham
,
A.
Acosta
,
A.
Aitken
,
A.
Tejani
,
J.
Totz
,
Z.
Wang
, and
W.
Shi
, “
Photo-realistic single image super-resolution using a generative adversarial network
,” in
IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2017
), pp.
105
114
.
25.
M.
Kawulok
,
S.
Piechaczek
,
K.
Hrynczenko
,
P.
Benecki
,
D.
Kostrzewa
, and
J.
Nalepa
, “
On training deep networks for satellite image super-resolution
,” in
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
(
IEEE
,
2019
), pp.
3125
3128
.
26.
C.
Kong
,
J.
Chang
,
Z.
Wang
,
Y.
Li
, and
W.
Bao
, “
Data-driven super-resolution reconstruction of supersonic flow field by convolutional neural networks
,”
AIP Adv.
11
,
065321
(
2021
).
27.
Z.
Wang
,
X.
Li
,
L.
Liu
,
X.
Wu
,
P.
Hao
,
X.
Zhang
, and
F.
He
, “
Deep-learning-based super-resolution reconstruction of high-speed imaging in fluids
,”
Phys. Fluids
34
,
037107
(
2022
).
28.
C.
Szegedy
,
S.
Ioffe
,
V.
Vanhoucke
, and
A. A.
Alemi
, “
Inception-v4, inception-ResNet and the impact of residual connections on learning
,” in
31st AAAI Conference on Artificial Intelligence
(
AIAA
,
2017
), pp.
4278
4284
.
29.
X. J.
Maoy
,
C.
Shen
, and
Y. B.
Yang
, “
Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
,” in
30th International Conference on Neural Information Processing Systems
(Curran Associates Inc.,
2016
), pp.
2810
2818
.
30.
T.
Ukai
, “
The principle and characteristics of an image fibre background oriented schlieren (Fibre BOS) technique for time-resolved three-dimensional unsteady density measurements
,”
Exp. Fluids
62
,
170
(
2021
).
31.
J.
Westerweel
and
A. F.
Scarano
, “
Universal outlier detection for PIV data
,”
Exp. Fluids
39
,
1096
1100
(
2005
).
32.
M.
Raffel
,
C. E.
Willert
,
F.
Scarano
,
C. J.
Kahler
,
S. T.
Wereley
, and
J.
Kompenhans
,
Particle Image Velocimetry: A Practical Guide
, 3rd ed. (
Springer International Publishing
,
2018
).
33.
F.
Nicolas
,
V.
Todoroff
,
A.
Plyer
,
G.
Le Besnerais
,
D.
Donjat
,
F.
Micheli
,
F.
Champagnat
,
P.
Cornic
, and
Y.
Le Sant
, “
A direct approach for instantaneous 3D density field reconstruction from Background Oriented Schlieren (BOS) measurements
,”
Exp. Fluids
57
(
13
),
1
(
2016
).
34.
T.
Ukai
and
T.
Kuroda
, “
Flexibility and versatility enhancements due to a portable optical system for the background-oriented Schlieren techniques
,”
J. Visualization
26
,
551
561
(
2022
).
35.
E.
Agustsson
and
R.
Timofte
, “
NTIRE 2017 challenge on single image super-resolution: Dataset and study
,” in
IEEE Conference on Computer Vision and Pattern Recognition Workshops
(
IEEE
,
2017
), pp.
1122
1131
.
36.
T.
Ukai
,
H.
Zare-Behtash
, and
K.
Kontis
, “
Suspended liquid particle disturbance on laser-induced blast wave and low density distribution
,”
Phys. Fluids
29
(
12
),
126104
(
2017
).
37.
R.
Keys
, “
Cubic convolution interpolation for digital image processing
,”
IEEE Trans. Acoust. Speech Signal Process.
29
(
6
),
1153
1160
(
1981
).
You do not currently have access to this content.