In the field of data-driven turbulence modeling, the consistency of the a posteriori results and generalizability are the most critical aspects of new models. In this study, we combine a multi-case surrogate optimization technique with a progressive augmentation approach to enhance the performance of the popular k ω shear stress transport (SST) turbulence model in the prediction of flow separation. We introduce a separation factor into the transport equation of a turbulent specific dissipation rate (ω) to correct the underestimation of the turbulent viscosity by the k ω SST model in the case of flow separation for two-dimensional cases. The new model is optimized based on their performance on the training cases including periodic hills and curved backward-facing step flow. Simulation of the channel flow is likewise included in the optimization process to guarantee that the original performance of k ω SST is preserved in the absence of separation. The new model is verified on multiple unseen cases with different Reynolds numbers and geometries. Results show a significant improvement in the prediction of the recirculation zone, velocity components, and distribution of the friction coefficient in both training and testing cases, where flow separation is expected. The performance of the new models on the test case with no separation shows that they preserve the successful performance of k ω SST when flow separation is not expected.

1.
N. V.
Nikitin
,
N. V.
Popelenskaya
, and
A.
Stroh
, “
Prandtl's secondary flows of the second kind. Problems of description, prediction, and simulation
,”
Fluid Dyn.
56
,
513
538
(
2021
).
2.
J. P.
Slotnick
,
A.
Khodadoust
,
A.
Juan
,
D.
Darmofal
,
W.
Gropp
,
E.
Lurie
, and
D. J.
Mavriplis
, “
CFD vision 2030 study: A path to revolutionary computational aerosciences
,”
Technical Report No. NASA/CR-2014-218178
(
NASA
,
2014
).
3.
K.
Duraisamy
,
G.
Iaccarino
, and
H.
Xiao
, “
Turbulence modeling in the age of data
,”
Annu. Rev. Fluid Mech.
51
,
357
377
(
2019
).
4.
B.
Tracey
,
K.
Duraisamy
, and
J.
Alonso
, “
Application of supervised learning to quantify uncertainties in turbulence and combustion modeling
,” AIAA Paper No. AIAA 2013-0259,
2013
.
5.
J.-X.
Wang
,
J.-L.
Wu
, and
H.
Xiao
, “
Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
,”
Phys. Rev. Fluids
2
,
034603
(
2017
).
6.
J.-L.
Wu
,
H.
Xiao
, and
E.
Paterson
, “
Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework
,”
Phys. Rev. Fluids
3
,
074602
(
2018
).
7.
J.
Ling
,
A.
Kurzawski
, and
J.
Templeton
, “
Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
,”
J. Fluid Mech.
807
,
155
166
(
2016
).
8.
M. L. A.
Kaandorp
and
R. P.
Dwight
, “
Data-driven modelling of the Reynolds stress tensor using random forests with invariance
,”
Comput. Fluids
202
,
104497
(
2020
).
9.
R.
McConkey
,
E.
Yee
, and
F.-S.
Lien
, “
Deep structured neural networks for turbulence closure modeling
,”
Phys. Fluids
34
,
035110
(
2022
).
10.
K.
Duraisamy
, “
Perspectives on machine learning-augmented Reynolds-averaged and large eddy simulation models of turbulence
,”
Phys. Rev. Fluids
6
,
050504
(
2021
).
11.
A. P.
Singh
,
S.
Medida
, and
K.
Duraisamy
, “
Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils
,”
AIAA J.
55
,
2215
2227
(
2017
).
12.
J. R.
Holland
,
J. D.
Baeder
, and
K.
Duraisamy
, “
Field inversion and machine learning with embedded neural networks: Physics-consistent neural network training
,” AIAA Paper No. AIAA 2019-3200,
2019
.
13.
M. A.
Cruz
,
R. L.
Thompson
,
L. E. B.
Sampaio
, and
R. D. A.
Bacchi
, “
The use of the Reynolds force vector in a physics informed machine learning approach for predictive turbulence modeling
,”
Comput. Fluids
192
,
104258
(
2019
).
14.
J.
Weatheritt
and
R.
Sandberg
, “
A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship
,”
J. Comput. Phys.
325
,
22
37
(
2016
).
15.
J.
Weatheritt
and
R. D.
Sandberg
, “
The development of algebraic stress models using a novel evolutionary algorithm
,”
Int. J. Heat Fluid Flow
68
,
298
318
(
2017
).
16.
M.
Schmelzer
,
R. P.
Dwight
, and
P.
Cinnella
, “
Discovery of algebraic Reynolds-stress models using sparse symbolic regression
,”
Flow, Turbul. Combust.
104
,
579
603
(
2020
).
17.
A.
Amarloo
,
P.
Forooghi
, and
M.
Abkar
, “
Frozen propagation of Reynolds force vector from high-fidelity data into Reynolds-averaged simulations of secondary flows
,”
Phys. Fluids
34
,
115102
(
2022
).
18.
A.
Amarloo
,
P.
Cinnella
,
A.
Iosifidis
,
P.
Forooghi
, and
M.
Abkar
, “
Data-driven Reynolds stress models based on the frozen treatment of Reynolds stress tensor and Reynolds force vector
,”
Phys. Fluids
35
,
075154
(
2023
).
19.
R. D.
Sandberg
and
Y.
Zhao
, “
Machine-learning for turbulence and heat-flux model development: A review of challenges associated with distinct physical phenomena and progress to date
,”
Int. J. Heat Fluid Flow
95
,
108983
(
2022
).
20.
Y.
Zhao
,
H. D.
Akolekar
,
J.
Weatheritt
,
V.
Michelassi
, and
R. D.
Sandberg
, “
RANS turbulence model development using CFD-driven machine learning
,”
J. Comput. Phys.
411
,
109413
(
2020
).
21.
I. B. H.
Saïdi
,
M.
Schmelzer
,
P.
Cinnella
, and
F.
Grasso
, “
CFD-driven symbolic identification of algebraic Reynolds-stress models
,”
J. Comput. Phys.
457
,
111037
(
2022
).
22.
J.
Barzilai
and
J. M.
Borwein
, “
Two-point step size gradient methods
,”
IMA J. Numer. Anal.
8
,
141
148
(
1988
).
23.
J. A.
Nelder
and
R.
Mead
, “
A simplex method for function minimization
,”
Comput. J.
7
,
308
313
(
1965
).
24.
C. A. C.
Coello
,
G. B.
Lamont
,
D. A.
Van Veldhuizen
et al,
Evolutionary Algorithms for Solving Multi-Objective Problems
(
Springer
,
2007
), Vol.
5
.
25.
R.
Eberhart
and
J.
Kennedy
, “
Particle swarm optimization
,” in
Proceedings of the IEEE International Conference on Neural Networks
(
Citeseer
,
1995
), Vol.
4
, pp.
1942
1948
.
26.
R. H.
Myers
,
D. C.
Montgomery
, and
C. M.
Anderson-Cook
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
(
John Wiley & Sons
,
2016
).
27.
N. V.
Queipo
,
R. T.
Haftka
,
W.
Shyy
,
T.
Goel
,
R.
Vaidyanathan
, and
P. K.
Tucker
, “
Surrogate-based analysis and optimization
,”
Prog. Aerosp. Sci.
41
,
1
28
(
2005
).
28.
M. J.
Rincón
,
M.
Reclari
, and
M.
Abkar
, “
Turbulent flow in small-diameter ultrasonic flow meters: A numerical and experimental study
,”
Flow Meas. Instrum.
87
,
102227
(
2022
).
29.
M. J.
Rincón
,
M.
Reclari
,
X. I.
Yang
, and
M.
Abkar
, “
Validating the design optimisation of ultrasonic flow meters using computational fluid dynamics and surrogate modelling
,”
Int. J. Heat Fluid Flow
100
,
109112
(
2023
).
30.
P.
Singh
,
I.
Couckuyt
,
K.
Elsayed
,
D.
Deschrijver
, and
T.
Dhaene
, “
Multi-objective geometry optimization of a gas cyclone using triple-fidelity co-Kriging surrogate models
,”
J. Optim. Theory Appl.
175
,
172
193
(
2017
).
31.
X. B.
Lam
,
Y. S.
Kim
,
A. D.
Hoang
, and
C. W.
Park
, “
Coupled aerostructural design optimization using the Kriging model and integrated multiobjective optimization algorithm
,”
J. Optim. Theory Appl.
142
,
533
556
(
2009
).
32.
M.
Urquhart
,
M.
Varney
,
S.
Sebben
, and
M.
Passmore
, “
Aerodynamic drag improvements on a square-back vehicle at yaw using a tapered cavity and asymmetric flaps
,”
Int. J. Heat Fluid Flow
86
,
108737
(
2020
).
33.
F.
Waschkowski
,
Y.
Zhao
,
R.
Sandberg
, and
J.
Klewicki
, “
Multi-objective CFD-driven development of coupled turbulence closure models
,”
J. Comput. Phys.
452
,
110922
(
2022
).
34.
Y.
Fang
,
Y.
Zhao
,
F.
Waschkowski
,
A. S.
Ooi
, and
R. D.
Sandberg
, “
Toward more general turbulence models via multicase computational-fluid-dynamics-driven training
,”
AIAA J.
61
(5),
2100
2115
(
2023
).
35.
Y.
Bin
,
L.
Chen
,
G.
Huang
, and
X. I. A.
Yang
, “
Progressive, extrapolative machine learning for near-wall turbulence modeling
,”
Phys. Rev. Fluids
7
,
084610
(
2022
).
36.
M. J.
Rincón
,
A.
Amarloo
,
M.
Reclari
,
X. I. A.
Yang
, and
M.
Abkar
, “
Progressive augmentation of Reynolds stress tensor models for secondary flow prediction by computational fluid dynamics driven surrogate optimisation
,”
Int. J. Heat Fluid Flow
104
,
109242
(
2023
).
37.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
38.
F. R.
Menter
,
M.
Kuntz
, and
R.
Langtry
, “
Ten years of industrial experience with the SST turbulence model
,” Turbulence, Heat and Mass Transfer (
Begell House
, Inc.,
2003
), Vol. 4.
39.
P.
Balakumar
and
G. I.
Park
, “
DNS/LES simulations of separated flows at high Reynolds numbers
,” AIAA Paper No. AIAA 2015-2783,
2015
.
40.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
41.
S. B.
Pope
, “
A more general effective-viscosity hypothesis
,”
J. Fluid Mech.
72
,
331
340
(
1975
).
42.
J.
Sacks
,
S. B.
Schiller
, and
W. J.
Welch
, “
Designs for computer experiments
,”
Technometrics
31
,
41
47
(
1989
).
43.
A.
Sobester
,
A.
Forrester
, and
A.
Keane
,
Engineering Design via Surrogate Modelling: A Practical Guide
(
John Wiley & Sons
,
2008
).
44.
T.
Hastie
,
R.
Tibshirani
,
J. H.
Friedman
, and
J. H.
Friedman
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
(
Springer
,
2009
), Vol.
2
.
45.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
631
(
1998
).
46.
M. D.
McKay
,
R. J.
Beckman
, and
W. J.
Conover
, “
A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
,”
Technometrics
42
,
55
61
(
2000
).
47.
R.
Jin
,
W.
Chen
, and
A.
Sudjianto
, “
An efficient algorithm for constructing optimal design of computer experiments
,”
J. Stat. Plann. Inference
134
,
268
287
(
2005
).
48.
G.
Damblin
,
M.
Couplet
, and
B.
Iooss
, “
Numerical studies of space-filling designs: Optimization of Latin Hypercube Samples and subprojection properties
,”
J. Simul.
7
,
276
289
(
2013
).
49.
S.
Kawai
and
K.
Shimoyama
, “
Kriging-model-based uncertainty quantification in computational fluid dynamics
,” AIAA Paper No. AIAA 2014-2737,
2014
.
50.
M. A.
Bouhlel
,
J. T.
Hwang
,
N.
Bartoli
,
R.
Lafage
,
J.
Morlier
, and
J. R. R. A.
Martins
, “
A Python surrogate modeling framework with derivatives
,”
Adv. Eng. Software
135
,
102662
(
2019
).
51.
D. R.
Jones
, “
A taxonomy of global optimization methods based on response surfaces
,”
J. Global Optim.
21
,
345
383
(
2001
).
52.
D. R.
Jones
,
M.
Schonlau
, and
W. J.
Welch
, “
Efficient global optimization of expensive black-box functions
,”
J. Global Optim.
13
,
455
492
(
1998
).
53.
J.
Mockus
,
V.
Tiesis
, and
A.
Zilinskas
, “
The application of Bayesian methods for seeking the extremum
,” Towards Global Optimization (
North-Holland Publishing Company
,
1978
), Vol. 2, pp.
117
1129
.
54.
Y.
Bentaleb
,
S.
Lardeau
, and
M. A.
Leschziner
, “
Large-eddy simulation of turbulent boundary layer separation from a rounded step
,”
J. Turbul.
13
,
N4
(
2012
).
55.
M.
Lee
and
R. D.
Moser
, “
Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200
,”
J. Fluid Mech.
774
,
395
415
(
2015
).
56.
M.
Breuer
,
N.
Peller
,
C.
Rapp
, and
M.
Manhart
, “
Flow over periodic hills—Numerical and experimental study in a wide range of Reynolds numbers
,”
Comput. Fluids
38
,
433
457
(
2009
).
57.
J.-P.
Laval
and
M.
Marquillie
, “
Direct numerical simulations of converging–diverging channel flow
,” in
Progress in Wall Turbulence: Understanding and Modeling: Proceedings of the WALLTURB International Workshop, Lille
,
France
,
21–23 April 2009
(
Springer
,
2011
), pp.
203
209
.
58.
L. A.
Schiavo
,
A. B.
Jesus
,
J. L.
Azevedo
, and
W. R.
Wolf
, “
Large Eddy Simulations of convergent–divergent channel flows at moderate Reynolds numbers
,”
Int. J. Heat Fluid Flow
56
,
137
151
(
2015
).
59.
R.
Matai
and
P.
Durbin
, “
Large-eddy simulation of turbulent flow over a parametric set of bumps
,”
J. Fluid Mech.
866
,
503
525
(
2019
).
60.
R. B.
Langtry
and
F. R.
Menter
, “
Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes
,”
AIAA J.
47
,
2894
2906
(
2009
).
61.
F. R.
Menter
,
R.
Langtry
, and
S.
Völker
, “
Transition modelling for general purpose CFD codes
,”
Flow, Turbul. Combust.
77
,
277
303
(
2006
).
62.
See https://github.com/AUfluids/KOSSTSEP for “Available for OpenFOAM: Progressive augmentation of turbulence models for flow separation.”
You do not currently have access to this content.