Reducing turbulent skin friction drag is a fundamental goal for aircraft transportation to conserve energy and decrease emissions. We introduce an annular dielectric barrier discharge plasma actuator (A-DBD-PA) that merges the advantages of near-wall micro-blowing with pulsed plasma flow control to reduce turbulence drag. Wind tunnel experiments on a flat plate assessing the performance of A-DBD-PA revealed that the wall-normal jet on the symmetry plane is critical for turbulent drag reduction in an unsteady flow field. As the duty cycle of plasma actuation increases, it steadies the wall-normal jet, which diminishes shear stress and velocity fluctuations in the boundary layer. This enhanced steadiness fosters induced vortices' formation and evolution, directly impacting the drag reduction rate. Duty cycles below 50% yield a limited drag reduction rate because the airflow's viscous effects predominate over the influence of plasma actuation. Conversely, duty cycles above 50% enhance the interaction of induced vortices, contributing to a stronger disturbance and more effective control, optimizing drag reduction rate up to a maximum of 5.197%.

1.
R.
Qiu
,
S.
Hou
,
X.
Chen
, and
Z.
Meng
, “
Green aviation industry sustainable development towards an integrated support system
,”
Bus. Strategy Environ.
30
(
5
),
2441
2452
(
2021
).
2.
F.
Afonso
,
M.
Sohst
,
C. M.
Diogo
,
S. S.
Rodrigues
,
A.
Ferreira
,
I.
Ribeiro
,
R.
Marques
,
F. F.
Rego
,
A.
Sohouli
, and
J.
Portugal-Pereira
, “
Strategies towards a more sustainable aviation: A systematic review
,”
Prog. Aerosp. Sci.
137
,
100878
(
2023
).
3.
Y.
Fan
,
Y.
Zhang
,
Z.
Ye
,
J.
Zou
, and
Y.
Zheng
, “
Micro-blowing: Effect on flow characteristics in turbulent flat plate boundary layer and drag reduction mechanism
,”
Acta Mech. Sin.
41
(
10
),
123814
123814
(
2020
).
4.
M. D.
Graham
and
D.
Floryan
, “
Exact coherent states and the nonlinear dynamics of wall-bounded turbulent flows
,”
Annu. Rev. Fluid Mech.
53
,
227
253
(
2021
).
5.
T. C.
Corke
and
F. O.
Thomas
, “
Active and passive turbulent boundary-layer drag reduction
,”
AIAA J.
56
(
10
),
3835
3847
(
2018
).
6.
P.
Olivucci
,
D. J.
Wise
, and
P.
Ricco
, “
Reduction of turbulent skin-friction drag by passively rotating discs
,”
J. Fluid Mech.
923
,
A8
(
2021
).
7.
G. Y.
Cui
,
C.
Pan
,
D.
Wu
,
Q. Q.
Ye
, and
J. J.
Wang
, “
Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer
,”
Chin. J. Aeronaut.
32
(
11
),
2433
2442
(
2019
).
8.
W.
Li
and
H.
Liu
, “
Two-point statistics of coherent structures in turbulent flow over riblet-mounted surfaces
,”
Acta Mech. Sin.
35
,
457
471
(
2019
).
9.
W.
Li
,
D.
Roggenkamp
,
V.
Paakkari
,
M.
Klaas
,
J.
Soria
, and
W.
Schroeder
, “
Analysis of a drag reduced flat plate turbulent boundary layer via uniform momentum zones
,”
Aerosp. Sci. Technol.
96
,
105552
(
2020
).
10.
J. S.
Kim
,
J.
Hwang
,
M.
Yoon
,
J.
Ahn
, and
H. J.
Sung
, “
Influence of a large-eddy breakup device on the frictional drag in a turbulent boundary layer
,”
Phys. Fluids
29
(
6
),
065103
(
2017
).
11.
O.
Mahfoze
,
A.
Moody
,
A.
Wynn
,
R.
Whalley
, and
S.
Laizet
, “
Reducing the skin-friction drag of a turbulent boundary-layer flow with low-amplitude wall-normal blowing within a Bayesian optimization framework
,”
Phys. Rev. Fluids
4
(
9
),
094601
(
2019
).
12.
B. R.
Zheng
,
Y.
Jin
,
M.
Yu
,
Y.
Li
,
B.
Wu
, and
Q.
Chen
, “
Turbulent drag reduction by spanwise slot blowing pulsed plasma actuation
,”
Plasma Sci. Technol.
24
(
11
),
114003
(
2022
).
13.
V.
Kornilov
, “
Combined blowing/suction flow control on low-speed airfoils
,”
Flow. Turbul. Combust.
106
,
81
108
(
2021
).
14.
J.
Yao
,
X.
Chen
,
F.
Thomas
, and
F.
Hussain
, “
Large-scale control strategy for drag reduction in turbulent channel flows
,”
Phys. Rev. Fluids
2
(
6
),
062601
(
2017
).
15.
J.
Yao
,
X.
Chen
, and
F.
Hussain
, “
Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing
,”
J. Fluid Mech.
852
,
678
709
(
2018
).
16.
B. R.
Zheng
,
Q.
Zhang
,
T.
Zhao
,
G.
Song
, and
Q.
Chen
, “
Experimental and numerical investigation of a self-supplementing dual-cavity plasma synthetic jet actuator
,”
Plasma Sci. Technol.
25
(
2
),
025503
(
2023
).
17.
X.
Zhang
and
F.
Qu
, “
Formation mechanism of wall jet generated by plasma actuators in quiescent air
,”
AIAA J.
60
(
8
),
4714
4724
(
2022
).
18.
B. R.
Zheng
,
X.
Ke
,
C.
Ge
,
Y.
Zhu
,
Y.
Wu
,
F.
Liu
, and
S.
Luo
, “
Electrical and flow characteristics of a double-side sliding pulsed discharge plasma actuator
,”
AIAA J.
58
(
2
),
733
746
(
2020
).
19.
B. R.
Zheng
,
M.
Xue
,
X.
Ke
,
C.
Ge
,
Y.
Wang
,
F.
Liu
, and
S.
Luo
, “
Unsteady vortex structure induced by a tri-electrode sliding discharge plasma actuator
,”
AIAA J.
57
(
1
),
467
471
(
2019
).
20.
J.
Yao
and
F.
Hussain
, “
Supersonic turbulent boundary layer drag control using spanwise wall oscillation
,”
J. Fluid Mech.
880
,
388
429
(
2019
).
21.
M. A.
Leschziner
, “
Friction-drag reduction by transverse wall motion—A review
,”
J. Mech.
36
(
5
),
649
663
(
2020
).
22.
J. X.
Bai
,
N.
Jiang
,
X. B.
Zheng
,
Z. Q.
Tang
,
K. J.
Wang
, and
X. T.
Cui
, “
Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators
,”
Chin. Phys. B
27
(
7
),
074701
(
2018
).
23.
X.
Cui
,
N.
Jiang
,
X.
Zheng
, and
Z.
Tang
, “
Active control of multiscale features in wall-bounded turbulence
,”
Acta Mech. Sin.
36
,
12
21
(
2020
).
24.
W.
Yuan
,
M.
Zhang
,
Y.
Cui
, and
B. C.
Khoo
, “
Phase-space dynamics of near-wall streaks in wall-bounded turbulence with spanwise oscillation
,”
Phys. Fluids
31
(
12
),
125113
(
2019
).
25.
A.
Cassinelli
,
M.
de Giovanetti
, and
Y.
Hwang
, “
Streak instability in near-wall turbulence revisited
,”
J. Turbul.
18
(
5
),
443
464
(
2017
).
26.
L.
Wang
,
R.
Hu
, and
X.
Zheng
, “
A scaling improved inner–outer decomposition of near-wall turbulent motions
,”
Phys. Fluids
33
(
4
),
045120
(
2021
).
27.
M.
Abbassi
,
W.
Baars
,
N.
Hutchins
, and
I.
Marusic
, “
Skin-friction drag reduction in a high-Reynolds-number turbulent boundary layer via real-time control of large-scale structures
,”
Int. J. Heat Fluid Flow
67
,
30
41
(
2017
).
28.
A.
Altıntaş
,
L.
Davidson
, and
S. H.
Peng
, “
Direct numerical simulation of drag reduction by spanwise oscillating dielectric barrier discharge plasma force
,”
Phys. Fluids
32
(
7
),
075101
(
2020
).
29.
P.
Ricco
,
M.
Skote
, and
M. A.
Leschziner
, “
A review of turbulent skin-friction drag reduction by near-wall transverse forcing
,”
Prog. Aerosp. Sci.
123
,
100713
(
2021
).
30.
V.
Kornilov
, “
Current state and prospects of researches on the control of turbulent boundary layer by air blowing
,”
Prog. Aerosp. Sci.
76
,
1
23
(
2015
).
31.
D. P.
Hwang
, “
An experimental study of turbulent skin friction reduction in supersonic flow using a microblowing technique
,” AIAA Paper No. 2000-0545,
2000
.
32.
S. J.
Kline
,
W. C.
Reynolds
,
F.
Schraub
, and
P.
Runstadler
, “
The structure of turbulent boundary layers
,”
J. Fluid Mech.
30
(
4
),
741
773
(
1967
).
33.
Y. H.
Li
and
Y.
Wu
, “
Research progress and outlook of flow control and combustion control using plasma actuation
” (in Chinese),
Sci. China Technol.
50
(
10
),
1252
1273
(
2020
).
34.
R.
Humble
,
S.
Craig
,
J.
Vadyak
,
P.
McClure
,
J.
Hofferth
, and
W.
Saric
, “
Spatiotemporal structure of a millimetric annular dielectric barrier discharge plasma actuator
,”
Phys. Fluids
25
(
1
),
017103
(
2013
).
35.
G.
Neretti
,
P.
Seri
,
M.
Taglioli
,
A.
Shaw
,
F.
Iza
, and
C. A.
Borghi
, “
Geometry optimization of linear and annular plasma synthetic jet actuators
,”
J. Phys. D
50
(
1
),
015210
(
2016
).
36.
B. K.
Mishra
,
A.
Gupta
, and
P.
Panigrahi
, “
Near-wall characteristics of wall-normal jets generated by an annular dielectric barrier discharge plasma actuator
,”
Phys. Rev. Fluids
7
(
3
),
033702
(
2022
).
37.
K. S.
Choi
and
J. H.
Kim
, “
Plasma virtual roughness elements for cross-flow instability control
,”
Exp. Fluids
59
,
1
15
(
2018
).
38.
H.
Borradaile
,
K.
Kourtzanidis
,
F.
Rogier
,
K. S.
Choi
, and
X.
Mao
, “
Flow reversal in millimetric annular DBD plasma actuator
,”
J. Phys. D
54
(
34
),
345202
(
2021
).
39.
T. N.
Jukes
,
K. S.
Choi
,
T.
Segawa
, and
H.
Yoshida
, “
Jet flow induced by a surface plasma actuator
,”
Proc. Inst. Mech. Eng., Part I
222
(
I5
),
347
356
(
2008
).
40.
B. K.
Mishra
and
P. K.
Panigrahi
, “
Starting vortex, wall jet, periodic vortex and dipole generated by a dielectric barrier discharge plasma actuator in quiescent air
,” in
70th Annual Meeting of the APS Division of Fluid Dynamics
,
November 19–21
(
2017
).
41.
A.
Santhanakrishnan
and
J. D.
Jacob
, “
Flow control with plasma synthetic jet actuators
,”
J. Phys. D
40
(
3
),
637
(
2007
).
42.
A.
Santhanakrishnan
,
D. A.
Reasor
, and
R. P.
LeBeau
, “
Characterization of linear plasma synthetic jet actuators in an initially quiescent medium
,”
Phys. Fluids
21
(
4
),
043602
(
2009
).
You do not currently have access to this content.