The high-speed railway bridge, accounting for over 50% of railway lines, plays an important role in high-speed railways. When the train runs at high speed on these bridges, the strong winds will directly pose a risk to the safety of train operation, even causing train overturning accidents. Therefore, it is significantly urgent to accurately simulate the relative motion of the train-bridge system in crosswind environment. An improved delayed detached-eddy simulation study based on the shear stress transfer k-omega (I-ω) turbulence model was used to analyze the aerodynamic characteristics of trains running on bridges under two relative motion modes, i.e., the static synthesis method (SSM) and the dynamic decomposition method (DDM), and the variation rule of train aerodynamic loads. The differences of aerodynamic forces, surface pressure distributions, and flow characteristics around the train body under two motions were discussed. The results show that the applied velocity-inlet boundaries in two relative train-bridge motion modes under crosswinds lead to a large difference in the flow characteristics around bridges. Compared with the SSM, the DDM generates more small-scale vortices in the leeward side of the train, causes more disturbances, and enhances the flow instability. Under the DDM, the side force coefficient and lift force coefficient of the train are decreased by 1.99%, 66.67% (Train on the windward side) and 24.47%, 48.24% (Train on the leeward side), respectively, as compared to the SSM. The achievements obtained in the current study can provide data support for the operation standard of high-speed trains traveling on bridges.

1.
Bi
,
H.
,
Wang
,
Z.
,
Wang
,
H.
, and
Zhou
,
Y.
, “
Aerodynamic phenomena and drag of a maglev train running dynamically in a vacuum tube
,”
Phys. Fluids
34
(
9
),
096111
(
2022
).
2.
CEN European Standard
, “
Railway applications-aerodynamics—Part 4: Requirements and test procedures for aerodynamics on open track
” (
CEN European Standard
,
2009
), Standard No. CEN EN 14067-4.
3.
CEN European Standard
, “
Railway applications-aerodynamics—Part 6: Requirements and test procedures for cross wind assessment
” (
CEN European Standard
,
2010
), Standard No. CEN EN 14067-6.
4.
Chen
,
X.
,
Zhong
,
S.
,
Ozer
,
O.
,
Weightman
,
A.
, and
Gao
,
G.
, “
On the unsteady interactions between a sweeping jet and afterbody vortices
,”
Phys. Fluids
35
(
10
),
105513
(
2023
).
5.
Chen
,
Z.
,
Liu
,
T.
,
Guo
,
Z.
,
Huo
,
X.
,
Li
,
W.
, and
Xia
,
Y.
, “
Dynamic behaviors and mitigation measures of a train passing through windbreak transitions from ground to cutting
,”
J. Cent. South Univ.
29
(
8
),
2675
2689
(
2022
).
6.
Chen
,
Z.
and
Ni
,
Y.
, “
Sudden flow induced by mountain ridges beside windbreaks in a railway and its mitigation measures
,”
Transp. Safety Environ.
4
(
1
),
tdac004
(
2022
).
7.
Chiu
,
T.
and
Squire
,
L.
, “
An experimental study of the flow over a train in a crosswind at large yaw angles up to 90°
,”
J. Wind Eng. Ind. Aerodyn.
45
,
47
74
(
1992
).
8.
Copley
,
J. M.
, “
The three-dimensional flow around railway trains
,”
J. Wind Eng. Ind. Aerodyn.
26
,
21
52
(
1987
).
9.
Deng
,
E.
,
Yang
,
W.
,
He
,
X.
,
Zhu
,
Z.
,
Wang
,
H.
,
Wang
,
Y.
,
Wang
,
A.
, and
Zhou
,
L.
, “
Aerodynamic response of high-speed trains under crosswind in a bridge-tunnel section with or without a wind barrier
,”
J. Wind Eng. Ind. Aerodyn.
210
(
1
),
104502
(
2021
).
10.
Deng
,
Z.
,
Wang
,
F.
,
Zeng
,
C.
,
Zhang
,
J.
, and
Gao
,
G.
, “
Effect of upstream flow characteristics on the wake topology of a square-back truck
,”
Phys. Fluids
35
(
10
),
105130
(
2023
).
11.
Dong
,
T.
,
Minelli
,
G.
,
Wang
,
J.
,
Liang
,
X.
, and
Krajnović
,
S.
, “
Numerical investigation of a high-speed train underbody flows: Studying flow structures through large-eddy simulation and assessment of steady and unsteady Reynolds-averaged Navier–Stokes and improved delayed detached eddy simulation performance
,”
Phys. Fluids
34
(
1
),
015126
(
2022
).
12.
Guo
,
Z.
,
Liu
,
T.
,
Liu
,
Z.
,
Chen
,
X.
, and
Li
,
W.
, “
An IDDES study on a train suffering a crosswind with angles of attack on a bridge
,”
J. Wind Eng. Ind. Aerodyn.
217
(
108
),
104735
(
2021
).
13.
Han
,
S.
,
Zhang
,
J.
,
Xiong
,
X.
,
Ji
,
P.
,
Zhang
,
L.
,
Sheridan
,
J.
, and
Gao
,
G.
, “
Influence of high-speed maglev train speed on tunnel aerodynamic effects
,”
Build. Environ.
223
,
109460
(
2022
).
14.
Hemida
,
H.
and
Krajnovic
,
S.
, “
LES study of the influence of the nose shape and yaw angles on flow structures around trains
,”
J. Wind Eng. Ind. Aerodyn.
98
,
34
46
(
2010
).
15.
Jeong
,
J.
and
Hussain
,
F.
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
2006
).
16.
Li
,
W.
,
Liu
,
T.
,
Zhou
,
L.
,
Chen
,
Z.
,
Xia
,
Y.
, and
Huo
,
X.
, “
Impact of ballast length on train aerodynamics for a wind tunnel layout via CFD analysis
,”
Alexandria Eng. J.
65
(
1
),
275
293
(
2023
).
17.
Li
,
X.
,
Chen
,
G.
,
Krajnović
,
S.
, and
Zhou
,
D.
, “
Numerical study of the aerodynamic performance of a train with a crosswind for different embankment heights
,”
Flow, Turbul. Combust.
91
(
1
),
209
218
(
2021
).
18.
Liu
,
T.
,
Chen
,
Z.
,
Zhou
,
X.
, and
Zhang
,
J.
, “
A CFD analysis of the aerodynamics of a high-speed train passing through a windbreak transition under crosswind
,”
Eng. Appl. Comput. Fluid Mech.
12
(
1
),
137
151
(
2017
).
19.
Liu
,
T.
,
Wang
,
L.
,
Gao
,
H.
,
Xia
,
Y.
,
Guo
,
Z.
,
Li
,
W.
, and
Liu
,
H.
, “
Research progress on train operation safety in Xinjiang railway under wind environment
,”
Transp. Safety Environ.
4
(
2
),
tdac005
(
2022
).
20.
Miao
,
X.
,
He
,
K.
,
Minelli
,
G.
,
Zhang
,
J.
,
Gao
,
G.
,
Wei
,
H.
,
He
,
M.
, and
Krajnović
,
S.
, “
Aerodynamic performance of a high-speed train passing through three standard tunnel junctions under crosswinds
,”
Appl. Sci.
10
(
11
),
3664
(
2020
).
21.
Niu
,
J.
,
Zhou
,
D.
, and
Wang
,
Y.
, “
Numerical comparison of aerodynamic performance of stationary and moving trains with or without windbreak wall under crosswind
,”
J. Wind Eng. Ind. Aerodyn.
182
,
1
15
(
2018
).
22.
Paz
,
C.
,
Suárez
,
E.
, and
Gil
,
C.
, “
Numerical methodology for evaluating the effect of sleepers in the underbody flow of a high-speed train
,”
J. Wind Eng. Ind. Aerodyn.
167
,
140
147
(
2017
).
23.
Tang
,
M.
,
Xiong
,
X.
,
Li
,
X.
,
Zhang
,
J.
,
Chen
,
G.
, and
Wang
,
K.
, “
Vibration characteristics of outer windshield structures of high-speed trains based on fluid–structure interactions
,”
Nonlinear Dyn.
111
,
2111
2132
(
2023
).
24.
Wang
,
F.
,
Guo
,
Z.
,
Shi
,
Z.
,
Han
,
S.
,
Wang
,
Y.
, and
Zhang
,
J.
, “
A study of crosswind characteristics on aerodynamic performance of high-speed trains on embankment
,”
Iran. J. Sci. Technol. Trans. Mech. Eng.
47
,
417
431
(
2022
).
25.
Wang
,
J.
,
Liu
,
X.
,
Deng
,
E.
,
Ni
,
Y.
,
Chan
,
P.
,
Yang
,
W.
, and
Tan
,
Y.
, “
Acceleration and Reynolds effects of crosswind flow fields in gorge terrains
,”
Phys. Fluids
35
(
8
),
085143
(
2023
).
26.
Xu
,
B.
,
Liu
,
T.
,
Xia
,
Y.
,
Li
,
W.
,
Huo
,
X.
,
Gao
,
H.
,
Chen
,
Z.
, and
Liu
,
H.
, “
Computational fluid dynamics prediction of the aerodynamic difference between stationary and moving trains
,”
Alexandria Eng. J.
70
(
1
),
685
699
(
2023
).
27.
Xue
,
R.
,
Xiong
,
X.
,
Li
,
X.
, and
Chen
,
G.
, “
Influence of turbulent incoming flow on aerodynamic behaviors of train at 90° yaw angle
,”
Phys. Fluids
35
(
1
),
015121
(
2023
).
28.
Yang
,
B.
,
Xiong
,
X.
,
He
,
Z.
,
Li
,
X.
,
Xie
,
P.
, and
Tang
,
M.
, “
Feasibility of replacing the 3-coach with a 1.5-coach grouping train model in wind tunnel experiment at different yaw angles
,”
J. Cent. South Univ.
29
(
6
),
2062
2073
(
2022
).
29.
Zhang
,
J.
,
Adamu
,
A.
,
Gidado
,
F.
,
Tang
,
M.
,
Ozer
,
O.
, and
Chen
,
X.
, “
Flow control for aerodynamic drag reduction of a high-speed train with diversion slots on bogie regions
,”
Phys. Fluids
35
(
11
),
115111
(
2023b
).
30.
Zhang
,
J.
,
Adamu
,
A.
,
Han
,
S.
,
Wang
,
F.
,
Gao
,
G.
, and
Gidado
,
F.
, “
A numerical investigation of inter-carriage gap configurations on the aerodynamic performance of a wind-tunnel train model
,”
Proc. Inst. Mech. Eng., Part F
237
(
6
),
734
750
(
2023a
).
31.
Zhang
,
J.
,
Adamu
,
A.
,
Su
,
X.
,
Guo
,
Z.
, and
Gao
,
G.
, “
Effect of simplifying bogie regions on aerodynamic performance of high-speed train
,”
J. Cent. South Univ.
29
(
5
),
1717
1734
(
2022a
).
32.
Zhang
,
J.
,
Ding
,
Y.
,
Wang
,
Y.
,
Han
,
S.
,
Huang
,
F.
,
Deng
,
H.
,
Chen
,
Z.
, and
Gao
,
G.
, “
A novel bionic Coleoptera pantograph deflector for aerodynamic drag reduction of a high-speed train
,”
J. Cent. South Univ.
30
(
6
),
2064
2080
(
2023c
).
33.
Zhang
,
J.
,
Gidado
,
F.
,
Adamu
,
A.
,
Guo
,
Z.
, and
Gao
,
G.
, “
An investigation on the wake flow of a generic ship using IDDES: The effect of computational parameters
,”
Ocean Eng.
271
,
113644
(
2023e
).
34.
Zhang
,
J.
,
Huang
,
F.
,
Yu
,
Y.
,
Han
,
S.
,
Ding
,
Y.
, and
Gao
,
G.
, “
A novel wake flow control method for drag reduction of a high-speed train with vortex generators installing on streamlined tail nose
,”
Phys. Fluids.
35
(
10
),
105139
(
2023d
).
35.
Zhang
,
J.
,
Wang
,
F.
,
Guo
,
Z.
,
Han
,
S.
,
Gao
,
G.
, and
Wang
,
J.
, “
Investigation of the wake flow of a simplified heavy vehicle with different aspect ratios
,”
Phys. Fluids
34
(
6
),
065135
(
2022b
).
36.
Zhang
,
J.
,
Wang
,
Y.
,
Han
,
S.
,
Wang
,
F.
, and
Gao
,
G.
, “
A novel arch lattice-shell of enlarged cross-section hoods for micro-pressure wave mitigation at exit of maglev tunnels
,”
Tunnelling Underground Space Technol.
132
,
104859
(
2023f
).
37.
Zou
,
S.
,
He
,
X.
, and
Wang
,
H.
, “
Numerical investigation on the crosswind effects on a train running on a bridge
,”
Eng. Appl. Comput. Fluid Mech.
14
(
1
),
1458
1471
(
2020
).
You do not currently have access to this content.