A two-dimensional axisymmetric numerical model is employed to study the flow and heat transfer attributes of the pulsating air jet impingement on a dimpled surface. The results are compared with the steady jet impingement. The results are examined at a fixed Reynolds number of 5000, over a Strouhal number range of 0.1–0.5, and pulsation amplitude of 15% and 25% for three different nozzle-to-surface separations (z/d = 2, 6, and 10). The pulsation amplitude of 15% has a minor effect on heat transfer from the dimpled surface. However, at 25% pulsation amplitude, significant improvements in the heat transfer rates are obtained in many combinations of jet Strouhal number and jet surface spacing. The value of the optimum Strouhal number provides conditions for the maximum heat transfer rate, which varied with nozzle-to-surface separation distances. Combinations of higher separations and lower Strouhal numbers (and vice versa) produced optimum heat transfer among the cases considered in the present study. The maximum improvement (17.41%) in the average heat transfer over the steady jet was found at z/d = 10 for pulsation at St = 0.1, while at z/d = 6, St = 0.2 provides the highest heat transfer rate. It is urged that the vortices formed in pulse jet close to the natural frequency of vortex formation provide a conducive environment for the vortex growth and their existence, significantly affecting the jet entrainment, mixing, and jet spread, which eventually play the decisive factor in determining the overall heat transfer rates on the dimpled surface.

1.
S. V.
Ekkad
and
P.
Singh
, “
A modern review on jet impingement heat transfer methods
,”
J. Heat Transfer
143
(
6
),
064001
(
2021
).
2.
S.
Jones-Jackson
,
R.
Rodriguez
, and
A.
Emadi
, “
Jet impingement cooling in power electronics for electrified automotive transportation: Current status and future trends
,”
IEEE Trans. Power Electron.
36
(
9
),
10420
10435
(
2021
).
3.
D.
Singh
,
B.
Premachandran
, and
S.
Kohli
, “
Effect of nozzle shape on jet impingement heat transfer from a circular cylinder
,”
Int. J. Therm. Sci.
96
,
45
69
(
2015
).
4.
J.
Lee
and
S. J.
Lee
, “
Stagnation region heat transfer of a turbulent axisymmetric jet impingement
,”
Exp. Heat Transfer
12
(
2
),
137
156
(
1999
).
5.
H.
Yadav
and
A.
Agrawal
, “
Effect of vortical structures on velocity and turbulent fields in the near region of an impinging turbulent jet
,”
Phys. Fluids
30
(
3
),
035107
(
2018
).
6.
P.
Sharma
,
P. K.
Singh
,
S. K.
Sahu
, and
H.
Yadav
, “
A critical review on flow and heat transfer characteristics of synthetic jet
,”
Trans. Indian Natl. Acad. Eng.
7
(
1
),
61
92
(
2022
).
7.
H. M.
Hofmann
,
D. L.
Movileanu
,
M.
Kind
, and
H.
Martin
, “
Influence of a pulsation on heat transfer and flow structure in submerged impinging jets
,”
Int. J. Heat Mass Transfer
50
(
17–18
),
3638
3648
(
2007
).
8.
C.
Nuntadusit
,
M.
Wae-hayee
,
A.
Bunyajitradulya
, and
S.
Eiamsa-ard
, “
Visualization of flow and heat transfer characteristics for swirling impinging jet
,”
Int. Commun. Heat Mass Transfer
39
(
5
),
640
648
(
2012
).
9.
S.
Rakhsha
,
M.
Rajabi Zargarabadi
, and
S.
Saedodin
, “
Experimental and numerical study of flow and heat transfer from a pulsed jet impinging on a pinned surface
,”
Exp. Heat Transfer
34
(
4
),
376
391
(
2021
).
10.
R.
Vinze
et al, “
Effect of dimple pitch and depth on jet impingement heat transfer over dimpled surface impinged by multiple jets
,”
Int. J. Therm. Sci.
145
,
105974
(
2019
).
11.
V. I.
Terekhov
,
S. V.
Kalinina
,
Y. M.
Mshvidobadze
, and
K. A.
Sharov
, “
Impingement of an impact jet onto a spherical cavity. Flow structure and heat transfer
,”
Int. J. Heat Mass Transfer
52
(
11–12
),
2498
2506
(
2009
).
12.
K.
Nakabe
,
K.
Inaoka
,
T.
Ai
, and
K.
Suzuki
, “
Flow visualization of longitudinal vortices induced by an inclined impinging jet in a crossflow-effective cooling of high-temperature gas turbine blades
,”
Energy Convers. Manage.
38
,
1145
1153
(
1997
).
13.
K.
Baghel
,
A.
Sridharan
, and
J. S.
Murallidharan
, “
Heat transfer characteristics of free surface water jet impingement on a curved surface
,”
Int. J. Heat Mass Transfer
164
,
120487
(
2021
).
14.
J.
Garg
,
M.
Arik
,
S.
Weaver
,
T.
Wetzel
, and
S.
Saddoughi
, “
Meso scale pulsating jets for electronics cooling
,”
ASME J. Electron. Packag.
127
(
4
),
503
511
(
2005
).
15.
G. M.
Carlomagno
and
A.
Ianiro
, “
Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: A review
,”
Exp. Therm. Fluid Sci.
58
,
15
35
(
2014
).
16.
H.
Yadav
and
A.
Agrawal
, “
Self-similar behavior of turbulent impinging jet based upon outer scaling and dynamics of secondary peak in heat transfer
,”
Int. J. Heat Fluid Flow
72
,
123
142
(
2018
).
17.
K.
Jambunathan
,
E.
Lai
,
M. A.
Moss
, and
B. L.
Button
, “
A review of heat transfer data for single circular jet impingement
,”
Int. J. Heat Fluid Flow
13
,
106
115
(
1992
).
18.
G. C.
Saliba
,
A.
Batikh
,
S.
Colin
, and
L.
Baldas
, “
Pulsed impinging jets for heat transfer: A short review
,”
ASME J. Heat Mass Transfer
145
(
11
),
110801
(
2023
).
19.
L. F. A.
Azevedo
,
B. W.
Webb
, and
M.
Queiroz
, “
Pulsed air jet impingement heat transfer
,”
Exp. Therm. Fluid Sci.
8
,
206
213
(
1994
).
20.
C. M.
Hsu
,
W. C.
Jhan
, and
Y. Y.
Chang
, “
Flow and heat transfer characteristics of a pulsed jet impinging on a flat plate
,”
Heat Mass Transfer
56
(
1
),
143
160
(
2020
).
21.
S.
Alimohammadi
,
D. B.
Murray
, and
T.
Persoons
, “
On the numerical–experimental analysis and scaling of convective heat transfer to pulsating impinging jets
,”
Int. J. Therm. Sci.
98
,
296
311
(
2015
).
22.
P. J.
Vermeulen
,
V.
Ramesh
, and
W. K.
Yu
, “
Measurements of entrainment by acoustically pulsed axisymmetric air jets
,”
J. Eng. Gas Turbine Power
108
,
479
484
(
1986
).
23.
H. S.
Sheriff
and
D. A.
Zumbrunnen
Effect of flow pulsations on the cooling effectiveness of an impinging jet
,”
J. Heat Transfer.
116
(
4
),
886
895
(
1994
).
24.
E. C.
Mladin
and
D. A.
Zumbrunnen
, “
Local convective heat transfer to submerged pulsating jets
,”
Int. J. Heat Mass Transfer
40
,
3305
3321
(
1997
).
25.
R.
Zulkifli
and
K.
Sopian
, “
Studies on pulse jet impingement heat transfer: Flow profile and effect of pulse frequencies on heat transfer
,”
Int. J. Eng. Technol.
4
(
1
),
86
94
(
2007
).
26.
M.
Raizner
,
V.
Rinsky
,
G.
Grossman
, and
R.
van Hout
, “
Heat transfer and flow field measurements of a pulsating round jet impinging on a flat heated surface
,”
Int. J. Heat Fluid Flow
77
,
278
287
(
2019
).
27.
M. A.
Pakhomov
and
V. I.
Terekhov
, “
Numerical study of fluid flow and heat transfer characteristics in an intermittent turbulent impinging round jet
,”
Int. J. Therm. Sci.
87
,
85
93
(
2015
).
28.
P.
Xu
,
B.
Yu
,
S.
Qiu
,
H. J.
Poh
, and
A. S.
Mujumdar
, “
Turbulent impinging jet heat transfer enhancement due to intermittent pulsation
,”
Int. J. Therm. Sci.
49
(
7
),
1247
1252
(
2010
).
29.
F.
Liu
,
J.
Mao
,
J.
Yan
, and
F.
Wang
, “
Experimental investigation on time-averaged heat transfer characteristics of a row of pulsating jets
,”
Exp. Therm. Fluid Sci.
147
,
110958
(
2023
).
30.
C. R.
Kumar
and
J. M. A.
Majid
, “
Renewable energy for sustainable development in India: Current status, future prospects, challenges, employment, and investment opportunities
,”
Energy Sustainability Soc.
10
(
1
),
2
(
2020
).
31.
Y. W.
Lyu
,
Y. D.
Zhao
,
J. Y.
Zhang
,
J. Z.
Zhang
,
Y.
Shan
, and
X. Y.
Luo
, “
Large eddy simulation of impinging heat transfer of pulsed chevron jet on a semi-cylindrical concave plate
,”
Phys. Fluids
35
(
2
),
025115
(
2023
).
32.
T.
Tu
,
S.
Chen
,
Y.
Shi
, and
W.
Li
, “
Flow mechanism and heat transfer characteristic of sweeping jet impinging on confined concave surfaces
,”
Phys. Fluids
35
(
1
),
015147
(
2023
).
33.
D.
Zhang
,
H.
Qu
,
J.
Lan
,
J.
Chen
, and
Y.
Xie
, “
Flow and heat transfer characteristics of single jet impinging on protrusioned surface
,”
Int. J. Heat Mass Transfer
58
(
1–2
),
18
28
(
2013
).
34.
Y.
Xie
,
P.
Li
,
J.
Lan
, and
D.
Zhang
, “
Flow and heat transfer characteristics of single jet impinging on dimpled surface
,”
J. Heat Transfer
135
(
5
),
052201
(
2013
).
35.
R.
van Hout
,
V.
Rinsky
,
N.
Sasson
,
C.
Hershcovich
,
M.
Tshuva
, and
Y. J.
Grobman
, “
Axisymmetric jet impingement on a dimpled surface: Effect of impingement location on flow field characteristics
,”
Int. J. Heat Fluid Flow
74
,
53
64
(
2018
).
36.
Y. A.
Çengel
,
Heat Transfer: A Practical Approach
, McGraw-Hill Series in Mechanical Engineering (
McGraw-Hill
,
2003
).
37.
Z.
Li
,
Y. Y.
Liu
,
W.
Zhou
,
X.
Wen
, and
Y. Y.
Liu
, “
Thermal pollution level reduction by sweeping jet-based enhanced heat dissipation: A numerical study with calibrated generalized k-ω (GEKO) model
,”
Appl. Therm. Eng.
204
,
117990
(
2022
).
38.
R.
Gardon
and
J. C.
Akfirat
,
The Role of Turbulence in Determining the Heat-Transfer Characteristics of Impinging Jets
(
Pergamon Press
,
1965
).
39.
H. M.
Hofmann
,
R.
Kaiser
,
M.
Kind
, and
H.
Martin
, “
Calculations of steady and pulsating impinging jets—An assessment of 13 widely used turbulence models
,”
Numer. Heat Transfer, Part B
51
(
6
),
565
583
(
2007
).
40.
M. K.
Isman
,
P. J.
Morris
, and
M.
Can
, “
Investigation of laminar to turbulent transition phenomena effects on impingement heat transfer
,”
Heat Mass Transfer
52
(
10
),
2027
2036
(
2016
).
41.
S.
Alimohammadi
,
D. B.
Murray
, and
T.
Persoons
, “
Experimental validation of a computational fluid dynamics methodology for transitional flow heat transfer characteristics of a steady impinging jet
,”
J. Heat Transfer
136
(
9
),
091703
(
2014
).
42.
K.
Lodefier
,
B.
Merci
,
C.
de Langhe
, and
E.
Dick
, “
Transition modelling with the k-Ω turbulence model and an intermittency transport equation
,”
J. Therm. Sci.
13
,
220
225
(
2004
).
43.
X. W.
Zhu
,
L.
Zhu
, and
J. Q.
Zhao
, “
An in-depth analysis of conjugate heat transfer process of impingement jet
,”
Int. J. Heat Mass Transfer
104
,
1259
1267
(
2017
).
44.
B.
Sagot
,
G.
Antonini
,
A.
Christgen
, and
F.
Buron
, “
Jet impingement heat transfer on a flat plate at a constant wall temperature
,”
Int. J. Therm. Sci.
47
(
12
),
1610
1619
(
2008
).
45.
B.
Zhang
,
M. O. A.
Hamid
, and
W.
Liu
, “
Numerical and experimental study of field synergy analysis in water jet impingement based on minimum entropy generation method
,”
Appl. Therm. Eng.
99
,
944
958
(
2016
).
46.
ANSYS Inc
.
ANSYS Fluent Theory Guide
(
ANSYS Inc
.,
2021
).
47.
H.
Yadav
and
A.
Agrawal
, “
Effect of pulsation on the near flow field of a submerged water jet
,”
Sadhana
43
(
44
),
44
(
2018
).
48.
H.
Yadav
,
A.
Agrawal
, and
A.
Srivastava
, “
Mixing and entrainment characteristics of a pulse jet
,”
Int. J. Heat Fluid Flow
61
,
749
761
(
2016
).
49.
G.
Xia
,
L.
Cao
, and
G.
Bi
, “
A review on battery thermal management in electric vehicle application
,”
J. Power Sources
367
,
90
105
(
2017
).
50.
A. A.
Pesaran
, “
Battery thermal models for hybrid vehicle simulations
,”
J. Power Sources
110
(
2
),
377
382
(
2002
).
51.
F. K.
Browand
and
P. D.
Weidman
, “
Large scales in the developing mixing layer
,”
J. Fluid Mech.
76
(
1
),
127
144
(
1976
).
52.
A. K. M. F.
Hussain
and
K. B. M. Q.
Zaman
, “
The ‘preferred mode’ of the axisymmetric jet
,”
J. Fluid Mech.
110
,
39
71
(
1981
).
53.
S. C.
Crow
and
F. H.
Champagne
, “
Orderly structure in jet turbulence
,”
J. Fluid Mech.
48
,
547
591
(
1971
).
54.
J.
Lepicovsky
,
K.
Ahuja
,
W.
Brown
, and
R.
Burrin
, “
Coherent large-scale structures in high Reynolds number supersonic jet of Mach number 1.4
,” AIAA Paper No. 1986-1941,
1986
.
55.
B.
Han
and
R. J.
Goldstein
, “
Instantaneous energy separation in a free jet. Part I. Flow measurement and visualization
,”
Int. J. Heat Mass Transfer
46
(
21
),
3975
3981
(
2003
).
56.
S.
Russ
and
P. J.
Strykowski
, “
Turbulent structure and entrainment in heated jets: The effect of initial conditions
,”
Phys. Fluids A
5
(
12
),
3216
3225
(
1993
).
You do not currently have access to this content.