The flow separation control on an adverse-pressure-gradient ramp model is studied using various flow control strategies. Using a steady turbulent flow, the effects of utilizing an active hybrid control (suction and blowing) on the separation bubble behind a ramp are investigated numerically. A parametric analysis is conducted in which the actuators' pitch angle, diameter, and streamwise position are varied. The results are compared to determine the most effective method for compensating adverse pressure gradients and managing the separated flows on a ramp model. The best results for the blowing scenario correspond to a blowing actuator with a dimensionless distance of L x / L 1 = 1 / 70 from the top of the ramp, a dimensionless diameter of d / L 1 = 1 / 70, and a dimensionless angle of θ / θ 0 = 2 / 6. The actuator is found to be able to wipe out the separation zone entirely at a velocity ratio of 3. The best results for the suction approach belong to a suction actuator with L x / L 1 = 1 + 1 / 70 from the top of the ramp, d / L 1 = 3 / 70, and θ / θ 0 = 4 / 6. The modeling shows that the actuator removes the separation zone at a lower velocity ratio, namely, at 1.5. Nonetheless, a recirculation zone forms behind the suction point. Using a combined system, with a velocity ratio of 0.5 for a diameter of 3 and 2 for a diameter of 1, eliminates the separation zones on the ramp and after the suction actuator while lowering energy consumption. The blowing actuator consumed 3.2 times as much power as the combined actuator, whereas the suction actuator consumed 1.2 times as much power. Therefore, analyzing the present results as a prerequisite makes it possible to reduce flow separation and its adverse effects in more practical environments such as airfoils with an optimal cost.

1.
A. M.
Lefebvre
, “
Investigation of co-flow jet flow control and its applications
,” Ph.D. thesis (
University of Miami
,
2015
).
2.
A.
Raman
, “
Numerical investigation of vortex generators and jet in cross-flow enhancements
,” Ph.D. dissertation (The University of Texas at Arlington,
2016
).
3.
M.
Atashafrooz
, “
Effects of Ag-water nanofluid on hydrodynamics and thermal behaviors of three-dimensional separated step flow
,”
Alexandria Eng. J.
57
,
4277
(
2018
).
4.
L.
Chen
,
K.
Asai
,
T.
Nonomura
,
G.
Xi
, and
T.
Liu
, “
A review of backward-facing step (BFS) flow mechanisms, heat transfer and control
,”
Therm. Sci. Eng. Prog.
6
,
194
(
2018
).
5.
S.
Kumar
and
S.
Vengadesan
, “
Control of separated fluid flow and heat transfer characteristics over a backward facing step
,”
Numer. Heat Transfer, Part A
73
,
366
(
2018
).
6.
S.
Kumar
and
S.
Vengadesan
, “
The effect of fin oscillation in heat transfer enhancement in separated flow over a backward facing step
,”
Int. J. Heat Mass Transfer
128
,
954
(
2019
).
7.
S. M.
Hasheminejad
and
Y.
Masoumi
, “
Smart hybrid VIV control of a linearly sprung cylinder using an internal semi-active NES-based vibration absorber coupled with two active rotating wake-control rods
,”
Ocean Eng.
266
,
112310
(
2022
).
8.
S. M.
Hasheminejad
and
Y.
Masoumi
, “
Hybrid active flow induced vibration control of a circular cylinder equipped with a wake-mounted smart piezoelectric bimorph splitter plate
,”
J. Fluids Struct.
110
,
103531
(
2022
).
9.
S. W.
Evans
and
H. P.
Hodson
, “
The cost of flow control in a compressor
,” in
Proceedings of Turbo Expo: Power for Land, Sea, and Air
(
ASME
,
2011
), pp.
1
12
.
10.
R.
Wallis
, “
The use of air jets for boundary layer control
,” Report No. AD-A955 673,
1952
.
11.
G.
Godard
and
M.
Stanislas
, “
Control of a decelerating boundary layer. Part 3: Optimization of round jets vortex generators
,”
Aerosp. Sci. Technol.
10
,
455
(
2006
).
12.
M.
Koklu
and
L. R.
Owens
, “
Flow separation control over a ramp using sweeping jet actuators
,” AIAA Paper No. 2014-2367,
2014
.
13.
S. J.
Beresh
,
J. F.
Henfling
,
R. W.
Spillers
, and
B.
Pruett
, “
Influence of the fluctuating velocity field on the surface pressures in a jet/fin interaction
,”
J. Spacecr. Rockets
55
,
1098
(
2018
).
14.
M.
Koklu
, “
Effects of sweeping jet actuator parameters on flow separation control
,”
AIAA J.
56
,
100
(
2018
).
15.
M. J.
Pour Razzaghi
,
C.
Xu
,
Y.
Liu
, and
Y.
Masoumi
, “
The effects of minute vortex generator jet in a turbulent boundary layer with adverse pressure gradient
,”
Sci. Prog.
104
,
368504211023294
(
2021
).
16.
M. J.
Pour Razzaghi
,
C.
Xu
, and
A.
Emamverdian
, “
The interaction of vortices induced by a pair of microjets in the turbulent boundary layer
,”
J. Visualization
25
,
449
(
2022
).
17.
M. J.
Pour Razzaghi
,
Y.
Masoumi
,
S. M.
Rezaei Sani
, and
G.
Huang
, “
Controlling flow separation over a curved ramp using vortex generator microjets
,”
Phys. Fluids
34
,
115114
(
2022
).
18.
M. J.
P. Razzaghi
,
Y.
Masoumi
,
Y.
Liu
, and
S. M.
R. Sani
, “
Numerical study of microjet and heat flux effects on flow separation and heat transfer over a ramp
,”
Phys. Fluids
35
,
045113
(
2023
).
19.
M. J.
P. Razaghi
,
S. M.
R. Sani
,
Y.
Masoumi
,
G.
Huang
, and
H.
Li
, “
Comparison and modification of turbulence models for active flow separation control over a flat surface
,”
Phys. Fluids
35
,
065125
(
2023
).
20.
S.
He
,
K.
Zhang
,
Y.
Song
, and
Y.
Zhou
, “
Control of flow separation from a curved ramp using a steady-blowing jet
,”
Phys. Fluids
35
,
045139
(
2023
).
21.
S.
Kasmaiee
,
M.
Tadjfar
, and
S.
Kasmaiee
, “
Optimization of blowing jet performance on wind turbine airfoil under dynamic stall conditions using active machine learning and computational intelligence
,”
Arabian J. Sci. Eng.
1
,
1
25
(
2023
).
22.
D.
Greenblatt
,
K.
Paschal
,
C.
Yao
,
J.
Harris
,
N.
Schaeffler
, and
A.
Washburn
, “
A separation control CFD validation test case. Part 1: Baseline & steady suction
,” AIAA Paper No. 2004-2220,
2004
.
23.
Y.
Liu
,
J.
Sun
, and
L.
Lu
, “
Corner separation control by boundary layer suction applied to a highly loaded axial compressor cascade
,”
Energies
7
,
7994
(
2014
).
24.
H.
Zhang
,
S.
Chen
,
Q.
Meng
, and
S.
Wang
, “
Flow separation control using unsteady pulsed suction through endwall bleeding holes in a highly loaded compressor cascade
,”
Aerosp. Sci. Technol.
72
,
455
(
2018
).
25.
W.
Rauf
,
R.
Tarakka
, and
M. I.
Jalaluddin
, “
Effect of flow separation control with suction velocity variation: Study of flow characteristics, pressure coefficient, and drag coefficient
,”
Univers. J. Mech. Eng.
8
,
142
(
2020
).
26.
A.
Rezaeiha
,
H.
Montazeri
, and
B.
Blocken
, “
Active flow control for power enhancement of vertical axis wind turbines: Leading-edge slot suction
,”
Energy
189
,
116131
(
2019
).
27.
J.
Sun
,
X.
Sun
, and
D.
Huang
, “
Aerodynamics of vertical-axis wind turbine with boundary layer suction–Effects of suction momentum
,”
Energy
209
,
118446
(
2020
).
28.
J.
Sun
and
D.
Huang
, “
Numerical investigation of boundary layer suction control positions on airfoils for vertical-axis wind turbine
,”
J. Mech. Sci. Technol.
35
,
2903
(
2021
).
29.
B.
Zhang
,
X.
Mao
,
B.
Liu
,
H.
Wang
,
Z.
Yang
, and
R.
Zhang
, “
Study on flow separation and suction control of a compressor tandem cascade
,”
Proc. Inst. Mech. Eng., Part C
(published online).
30.
S.
Chen
,
Y.
Gong
, and
C.
Zeng
, “
Pulsed suction towards unsteady active flow control in an axial compressor cascade including clearance leakage effects
,”
Appl. Therm. Eng.
219
,
119654
(
2023
).
31.
M.
Tadjfar
and
D.
Kamari
, “
Coupled blowing and suction for flow separation control
,” in
Proceedings of ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference
(
American Society of Mechanical Engineers
,
2019
), Paper No. AJKFluids2019-5384.
32.
E.
Fatahian
,
A.
L. Nichkoohi
,
H.
Salarian
, and
J.
Khaleghinia
, “
Comparative study of flow separation control using suction and blowing over an airfoil with/without flap
,”
Sādhanā
44
,
220
(
2019
).
33.
K.
Xu
,
Y.
Ren
, and
G.
Zha
, “
Separation control by co-flow wall jet
,” AIAA Paper No. 2021-2946,
2021
.
34.
Z.
Lei
,
Y.
Ren
, and
G.
Zha
, “
Supersonic axis-symmetric mixed-compression inlet using zero-net-mass-flux coflow jet flow control
,” AIAA Paper No. 2022-2234,
2022
.
35.
C.-Y.
Ma
,
H.-Y.
Xu
, and
C.-L.
Qiao
, “
Comparative study of two combined blowing and suction flow control methods on pitching airfoils
,”
Phys. Fluids
35
,
035120
(
2023
).
36.
S.
Hosseinverdi
and
H. F.
Fasel
, “
Delay of separation and transition for a laminar airfoil using active flow control
,” AIAA Paper No. 2023-3287,
2023
.
37.
S.
Song
and
J. K.
Eaton
, “
Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery
,”
Exp. Fluids
36
,
246
(
2004
).
38.
L.
Davidson
,
An Introduction to Turbulence Models
(
Chalmers University of Technology
,
2015
).
39.
R.
Langtry
and
F.
Menter
, “
Transition modeling for general CFD applications in aeronautics
,” AIAA Paper No. 2005-522,
2005
.
40.
F. M.
White
and
J.
Majdalani
,
Viscous Fluid Flow
(
McGraw-Hill
,
New York
,
2006
).
41.
K.
Narendran
,
K. V. K.
Vinay
,
K.
Murali
, and
S.
Kaushik
, “
Hydrodynamic study of flow past cylinders with different diameters at, high Reynolds number
” in
Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018)
(
Springer
,
2019
), Vol.
2
, pp.
835
855
.
42.
S.
Pröbsting
and
S.
Yarusevych
, “
Laminar separation bubble development on an airfoil emitting tonal noise
,”
J. Fluid Mech.
780
,
167
(
2015
).
43.
Y.
Wang
,
D.
Thompson
, and
Z.
Hu
, “
Effect of rounded corners on the flow and noise from a cube
,” AIAA Paper No. 2018-2960,
2018
.
44.
T. D.
Vuong
and
K. Y.
Kim
, “
Design optimization of a dual-bleeding recirculation channel to enhance operating stability of a transonic axial compressor
,”
Energies
15
,
159
(
2021
).
45.
S.
Yan
and
W.
Chu
, “
Influence of self-circulating casing treatment with double-bleed ports structure on compressor performance
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
234
,
1743
(
2020
).
You do not currently have access to this content.