A passive flow control technique of utilizing an equilateral triangular trip close to the leading edge was developed and tested for a micro-scale Eppler E423 airfoil at a Reynolds number based on the chord of 40 000. The analysis was carried out via high-order wall-resolved large eddy simulation using the computational solver HpMusic. Angles of attack of 5° and 20° were tested. It was shown that at an angle of attack of 5°, the trip height of two times the local boundary layer thickness outperformed existing passive flow control techniques from the literature by almost a factor of five in terms of the lift-to-drag ratio. To understand the underlying physics which allowed the trip to provide this very significant performance benefit, metrics such as pressure coefficient profiles, oil flows, iso-surfaces of Q-criteria, and leading-edge flow behavior were examined. It was found that this trip configuration simultaneously removed the flow separation regions on both the suction and pressure sides of the wing.

1.
S.
Hwan Song
,
H.
Wook Shon
,
G.
Yang Yeon
, and
H.
Ryeol Choi
, “
Design and implementation of cloud-like soft drone s-cloud
,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(
IEEE
,
2018
), pp.
1
9
.
2.
K.
Valavanis
,
Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy
(
Springer Dordrecht
,
2007
).
3.
K.
Hasan
,
S.
Newaz
, and
M. S.
Ahsan
, “
Design and development of an aircraft type portable drone for surveillance and disaster management
,”
Int. J. Intell. Unmanned Syst.
6
,
147
159
(
2018
).
4.
G.
Cai
,
K.-Y.
Lum
,
B. M.
Chen
, and
T. H.
Lee
, “
A brief overview on miniature fixed-wing unmanned aerial vehicles
,” in
IEEE ICCA 2010
(
IEEE
,
2010
), pp.
285
290
.
5.
C.
Cuerno Rejado
,
L.
Garcia Hernandez
,
A.
Sanchez Carmona
,
A.
Carrió Fernández
,
J. L.
Sanchez Lopez
, and
P.
Campoy Cervera
, “
Evolución histórica de los vehículos aéreos no tripulados hasta la actualidad
,”
Dyna
91
,
282
288
(
2016
).
6.
B.
Kinzig
, “
Global Hawk systems engineering: Case study
,” Technical Report No. 8844 (
Defense Technical Information Center
,
Fort Belvoir
,
2010
).
7.
H.
Qin
,
J. Q.
Cui
,
J.
Li
,
Y.
Bi
,
M.
Lan
,
M.
Shan
,
W.
Liu
,
K.
Wang
,
F.
Lin
,
Y. F.
Zhang
, and
B. M.
Chen
, “
Design and implementation of an unmanned aerial vehicle for autonomous firefighting missions
,” in
2016 12th IEEE International Conference on Control and Automation (ICCA)
(
IEEE
,
2016
), pp.
62
67
.
8.
K.
Nonami
, “
Research and development of drone and roadmap to evolution
,”
J. Rob. Mechatron.
30
,
322
336
(
2018
).
9.
V.
Be
,
F.
Adam
, and
I.
,
Jr
, “
Unmanned combat air vehicle: Mq-9 reaper
,” in
International Conference of Scientific Paper AFASES 2014
(
2014
).
10.
N.
Mahamud
,
G. M.
Shahriar
,
H. U.
Khan
,
S.
Sharmin
, and
N. J.
Lisa
, “
ALW drone: A new design and efficient approach
,” in
2016 19th International Conference on Computer and Information Technology (ICCIT)
(
IEEE
,
2016
), pp.
474
479
.
11.
B.
Loxton
,
M.
Abdulrahim
, and
S.
Watkins
, “
An investigation of fixed and rotary wing mav flight in replicated atmospheric turbulence
,” AIAA Paper No. 2008-227,
2008
.
12.
S.
Watkins
,
J.
Milbank
,
B. J.
Loxton
, and
W. H.
Melbourne
, “
Atmospheric winds and their implications for microair vehicles
,”
AIAA J.
44
,
2591
2600
(
2006
).
13.
P.
Ifju
,
D.
Jenkins
,
S.
Ettinger
,
Y.
Lian
,
W.
Shyy
, and
M.
Waszak
, “
Flexible-wing-based micro air vehicles
,” AIAA Paper No. 2002-705,
2002
.
14.
Active Flow Control: Papers Contributed to the Conference “Active Flow Control 2006”, Berlin, Germany, September 27 to 29, 2006
95
, edited by
R.
King
(
Springer
,
Berlin, New York
,
2007
).
15.
A.
Mohamed
,
S.
Watkins
,
R.
Clothier
,
M.
Abdulrahim
,
K.
Massey
, and
R.
Sabatini
, “
Fixed-wing MAV attitude stability in atmospheric turbulence–part 2: Investigating biologically-inspired sensors
,”
Prog. Aerosp. Sci.
71
,
1
13
(
2014
).
16.
A.
Panta
, “
Qualitative investigation of the dynamics of a leading edge control surfaces for MAV applications
,” in
International Micro Air Vehicle Conference and Flight Competition (IMAV) 2017
(
2017
).
17.
K.
Rengasamy
and
A. C.
Mandal
, “
Experiments on effective tripping device in a zero pressure gradient turbulent boundary layer
,”
J. Phys.: Conf. Ser.
822
,
012016
(
2017
).
18.
B. K.
Sreejith
and
S.
Alangar
, “
Numerical study on effect of boundary layer trips on aerodynamic performance of E216 airfoil
,”
Eng. Sci. Technol. Int. J.
21
,
77
(
2018
).
19.
B. K.
Sreejith
, “
Effect of boundary layer trip and tubercles on aerodynamic performance of E216 airfoil
,” Ph.D. thesis (
National Institute of Technology Karnataka
,
2018
).
20.
B. K.
Sreejith
,
A.
Sathyabhama
, and
S. S.
Kumar
, “
Comparative study on the aerodynamic performance of airfoil with boundary layer trip of various geometrical shapes
,”
J. Phys.: Conf. Ser.
1854
,
012003
(
2021
).
21.
X.
Li
,
K.
Yang
, and
X.
Wang
, “
Experimental and numerical analysis of the effect of vortex generator height on vortex characteristics and airfoil aerodynamic performance
,”
Energies
12
,
959
(
2019
).
22.
A.
Seshagiri
,
E.
Cooper
, and
L. W.
Traub
, “
Effects of vortex generators on an airfoil at low REYNOLDS numbers
,”
J. Aircr.
46
,
116
122
(
2009
).
23.
A.
Haines
, “
Airfoil design and data. R. Eppler. Springer-Verlag, Heidelberger Platz 3, D-1000 Berlin 33, Germany. 1990. 562 pp. Illustrated. DM128,00
,”
Aeronaut. J.
95
,
289
289
(
1991
).
24.
A.
Altman
and
G.
Allemand
, “
Post-stall performance improvement through bio-inspired passive covert feathers
,” AIAA Paper No. 2016-2042,
2016
.
25.
N.
Bakhtian
,
H.
Babinsky
,
A.
Thomas
, and
G.
Taylor
, “
The low Reynolds number aerodynamics of leading edge flaps
,” AIAA Paper No. 2007-662,
2007
.
26.
A. R.
Jones
,
N. M.
Bakhtian
, and
H.
Babinsky
, “
Low Reynolds number aerodynamics of leading-edge flaps
,”
J. Aircr.
45
,
342
345
(
2008
).
27.
M. D.
Luca
,
S.
Mintchev
,
Y.
Su
,
E.
Shaw
, and
K.
Breuer
, “
A bioinspired separated flow wing provides turbulence resilience and aerodynamic efficiency for miniature drones
,”
Sci. Rob.
5
,
eaay8533
(
2020
).
28.
M. D.
Luca
, “
The use of separation induced laminar to turbulent flow transition to improve the performance and robustness of low Reynolds numbers airfoils and wings
,” Ph.D. thesis (
Brown University
,
2013
).
29.
L.
Wang
,
L.-H.
Feng
,
Y.
Liang
,
Y.-L.
Chen
, and
Z.-Y.
Li
, “
Vortex control strategy for unsteady aerodynamic optimization of a plunging airfoil at a low Reynolds number
,”
Phys. Fluids
33
,
117110
(
2021
).
30.
S.
Kasmaiee
,
M.
Tadjfar
, and
S.
Kasmaiee
, “
Machine learning-based optimization of a pitching airfoil performance in dynamic stall conditions using a suction controller
,”
Phys. Fluids
35
,
095121
(
2023
).
31.
C.
Hirsch
,
Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics
(
Elsevier
,
2007
).
32.
Z.
Wang
,
Y.
Li
,
F.
Jia
,
G.
Laskowski
,
J.
Kopriva
,
U.
Paliath
, and
R.
Bhaskaran
, “
Towards industrial large eddy simulation using the FR/CPR method
,” in
Ninth International Conference on Computational Fluid Dynamics (ICCFD9), 2017
[
Comput. Fluids
156
,
579
589
(
2017
)].
33.
H. T.
Huynh
, “
A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods
,” AIAA Paper No. 2007-4079,
2007
.
34.
T.
Haga
,
H.
Gao
, and
Z. J.
Wang
, “
A high-order unifying discontinuous formulation for the Navier–Stokes equations on 3D mixed grids
,”
Math. Modell. Nat. Phenom.
6
,
28
56
(
2011
).
35.
Z.
Wang
and
H.
Gao
, “
A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids
,”
J. Comput. Phys.
228
,
8161
8186
(
2009
).
36.
E. J.
de Araujo
,
J.
Filho
, and
Z. J.
Wang
, “
Efficient implementation of the FR/CPR method on GPU clusters for industrial large eddy simulation
,” AIAA Paper No. 2020-3031,
2020
.
37.
M. A.
Alhawwary
and
Z. J.
Wang
, “
Implementation of a FWH approach in a high-order les tool for aeroacoustic noise predictions
,” AIAA Paper No. 2020-1724,
2020
.
38.
H.
Huynh
,
Z.
Wang
, and
P.
Vincent
, “
High-order methods for computational fluid dynamics: A brief review of compact differential formulations on unstructured grids
,” in
12th USNCCM mini-symposium of High-Order Methods for Computational Fluid Dynamics - A special issue dedicated to the 80th birthday of Professor Antony Jameson, 2014
[
Comput. Fluids
98
,
209
220
(
2014
)].
39.
Z. J.
Wang
, “
High-order computational fluid dynamics tools for aircraft design
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
372
,
20130318
(
2014
).
40.
B.
Cockburn
,
G. E.
Karniadakis
, and
C.-W.
Shu
,
Discontinuous Galerkin Methods: Theory, Computation and Applications
(
Springer Berlin
,
Heidelberg
,
2000
).
41.
Y.
Liu
,
M.
Vinokur
, and
Z. J.
Wang
, “
Discontinuous spectral difference method for conservation laws on unstructured grids
,” in
Computational Fluid Dynamics 2004
, edited by
C.
Groth
and
D. W.
Zingg
(
Springer
Berlin Heidelberg, Berlin, Heidelberg
,
2006
), pp.
449
454
.
42.
F.
Bassi
and
S.
Rebay
, “
A high order discontinuous Galerkin method for compressible turbulent flows
,” in
Discontinuous Galerkin Methods
, edited by
B.
Cockburn
,
G. E.
Karniadakis
, and
C.-W.
Shu
(
Springer
Berlin Heidelberg, Berlin, Heidelberg
,
2000
), pp.
77
88
.
43.
Y.
Li
and
Z. J.
Wang
, “
A convergent and accuracy preserving limiter for the FR/CPR method
,” AIAA Paper No. 2017-0756,
2017
.
44.
V.
Vatsa
,
M.
Carpenter
, and
D.
Lockard
, “
Re-evaluation of an optimized second order backward difference (BDF2OPT) scheme for unsteady flow applications
,”
AIAA Paper No. 2010-122
,
2012
.
45.
S.
Yoon
and
A.
Jameson
, “
Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier–Stokes equations
,”
AIAA J.
26
,
1025
1026
(
1988
).
46.
F.
Jia
,
Z.
Wang
,
R.
Bhaskaran
,
U.
Paliath
, and
G. M.
Laskowski
, “
Accuracy, efficiency and scalability of explicit and implicit FR/CPR schemes in large eddy simulation
,”
Comput. Fluids
195
,
104316
(
2019
).
47.
A.
Aihara
and
S.
Kawai
, “
Effects of spanwise domain size on les-predicted aerodynamics of stalled airfoil
,”
AIAA J.
61
,
1440
1446
(
2023
).
48.
J. M.
Turner
and
J.-W.
Kim
, “
Numerical investigation into the effect of separation and stall on aerofoil noise
,” in
Proceedings of the 11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP-11
) (
2019
).
49.
S.
Moreau
,
J.
Christophe
, and
M.
Roger
, “
LES of the trailing-edge flow and noise of a NACA0012 airfoil near stall
,” in
Proceedings of the Summer Program
(
Stanford University, Center for Turbulence Research Stanford
,
2008
), pp.
317
329
.
50.
D.
Luo
,
D.
Huang
, and
X.
Sun
, “
Passive flow control of a stalled airfoil using a microcylinder
,”
J. Wind Eng. Ind. Aerodyn.
170
,
256
273
(
2017
).
51.
X.
Shi
,
S.
Xu
,
L.
Ding
, and
D.
Huang
, “
Passive flow control of a stalled airfoil using an oscillating micro-cylinder
,”
Comput. Fluids
178
,
152
165
(
2019
).
52.
W.
Mostafa
,
A.
Abdelsamie
,
M.
Mohamed
,
D.
Thévenin
, and
M.
Sedrak
, “
Aerodynamic performance improvement using a micro-cylinder as a passive flow control around the s809 airfoil
,”
IOP Conf. Ser.: Mater. Sci. Eng.
973
,
012040
(
2020
).
53.
M. S. P.
Spalart
,
L.
Hedges
, and
A.
Travin
, “
Simulation of active flow control on a stalled airfoil
,”
Flow, Turbul. Combust.
71
,
361
(
2003
).
54.
S.
Dahlström
and
L.
Davidson
, “
Large eddy simulation applied to a high-Reynolds flow around an airfoil close to stall
,” AIAA Paper No. 2003-776,
2003
.
55.
M.
Genc
and
U.
Kaynak
, “
Control of laminar separation bubble over a NACA2415 aerofoil at low re transitional flow using blowing/suction
,”
Int. Conf. Aerosp. Sci. Aviat. Technol.
13
,
1
17
(
2009
).
56.
G.
Schewe
, “
Reynolds-number effects in flow around more-or-less bluff bodies
,”
J. Wind Eng. Ind. Aerodyn.
89
,
1267
1289
(
2001
).
57.
Z. J.
Wang
, “
Wall-modeled large eddy simulation of the NASA CRM high-lift configuration with the high-order FR/CPR method
,” AIAA Paper No. 2022-3395,
2022
.
58.
P. K.
Chang
, “
Steady separation of incompressible laminar flow from two-dimensional surfaces
,” in
Separation of Flow
, edited by
P. K.
Chang
(
Pergamon
,
1970
), Chap. II, pp.
55
95
.
59.
M.
Gad-el Hak
and
D. M.
Bushnell
, “
Separation control
,”
J. Fluids Eng.
113
,
5
(
1991
).
60.
S.
Eisenbach
and
R.
Friedrich
, “
Large-eddy simulation of flow separation on an airfoil at a high angle of attack and Re = 105 using cartesian grids
,”
Theor. Comput. Fluid Dyn.
22
,
213
(
2008
).
61.
M.
Xiao
,
Y.
Zhang
, and
H.
Chen
, “
Numerical study of an iced airfoil using window-embedded rans/les hybrid method
,” AIAA Paper No. 2017-3761,
2017
.
62.
J. H.
Almutairi
,
L. E.
Jones
, and
N. D.
Sandham
, “
Intermittent bursting of a laminar separation bubble on an airfoil
,”
AIAA J.
48
,
414
426
(
2010
).
63.
S. K.
Rahmani
and
Z. J.
Wang
, “
Computational study of passive flow control for a MAV-scale Eppler E423 airfoil
,” AIAA Paper No. 2023-0054, 2023.
64.
Y.
Khong
,
N.
Nordin
,
S.
Seri
,
A.
Mohammed
,
A.
Sapit
,
I.
Taib
,
K.
Abdullah
,
A.
Sadikin
, and
M.
Razali
, “
Effect of turning angle on performance of 2-D turning diffuser via asymptotic computational fluid dynamics
,”
IOP Conf. Ser.: Mater. Sci. Eng.
243
,
012013
(
2017
).
65.
T.
Xian
,
N.
Nordin
,
A.
Hariri
,
N.
Nasir
,
N.
Mat Isa
,
M.
Yahya
, and
S.
Md Seri
, “
Asymptotic computational fluid dynamic (ACFD) study of three-dimensional turning diffuser performance by varying angle of turn
,”
Int. J. Integr. Eng.
11
,
109
118
(
2019
).
66.
O. M.
Fouatih
,
M.
Medale
,
O.
Imine
, and
B.
Imine
, “
Design optimization of the aerodynamic passive flow control on NACA 4415 airfoil using vortex generators
,”
Eur. J. Mech. B
56
,
82
96
(
2016
).
67.
A.
Aboelezz
,
H.
Ghali
,
G.
Elbayomi
, and
M.
Madboli
, “
A novel VAWT passive flow control numerical and experimental investigations: Guided vane airfoil wind turbine
,”
Ocean Eng.
257
,
111704
(
2022
).
68.
S.
Chowdhury
and
V.
Maldonado
, “
Bio-inspired active and passive surface flow control for aerodynamic efficiency
,” AIAA Paper No. 2017-4120,
2017
.
69.
X.
Meng
,
H.
Hu
,
X.
Yan
,
F.
Liu
, and
S.
Luo
, “
Lift improvements using duty-cycled plasma actuation at low Reynolds numbers
,”
Aerosp. Sci. Technol.
72
,
123
133
(
2018
).
70.
L. W.
Traub
, “
Experimental investigation of the effect of trip strips at low Reynolds number
,”
J. Aircr.
48
,
1776
1784
(
2011
).
71.
S.
Ravi
,
S.
Watkins
,
J.
Watmuff
,
K.
Massey
,
P.
Peterson
, and
M.
Marino
, “
Influence of large-scale freestream turbulence on the performance of a thin airfoil
,”
AIAA J.
50
,
2448
2459
(
2012
).
72.
J.
Michálek
,
M.
Monaldi
, and
T.
Arts
, “
Aerodynamic performance of a very high lift low pressure turbine airfoil (T106C) at low Reynolds and high Mach number with effect of free stream turbulence intensity
,”
J. Turbomach.
134
,
061009
(
2012
).
73.
R. F.
Huang
and
H. W.
Lee
, “
Effects of freestream turbulence on wing-surface flow and aerodynamic performance
,”
J. Aircr.
36
,
965
972
(
1999
).
74.
H.
Hu
and
Z.
Yang
, “
An experimental study of the laminar flow separation on a low-Reynolds-number airfoil
,”
J. Fluids Eng.
130
,
051101
(
2008
).
You do not currently have access to this content.