This article describes the spatial development of a laminar separation bubble (LSB), its transition, and eventual breakdown under the influence of adverse pressure gradients (APGs) similar to those experienced by low-pressure turbine blades. The investigation combines a comprehensive experimental approach with a well-resolved large eddy simulation (LES). The streamwise pressure gradients were varied by manipulating the upper wall within the test section. The Reynolds number (Re), based on the plate length and inlet velocity, was 0.2 × 106 with a freestream turbulence intensity of 1.02%. The particle image velocimetry (PIV) and hotwire data were used to illustrate the vortex dynamics, growth of perturbations, and intermittency. The onset and end of transition progressively shift upstream, resulting in a reduction of the laminar shear layer length and bubble length with increasing APG. Interestingly, the flow features exhibit self-similarity in velocity profiles and the growth rate of velocity fluctuations when normalized against the bubble length. The formation of two-dimensional Kelvin–Helmholtz (K–H) rolls is apparent in the beginning, resulting in the selective amplification of frequency and exponential growth of fluctuations. Linear stability theory explains the most amplified frequency and phase speed of convective vortices, apart from the growth of disturbances. Analysis of LES data reveals intricate inviscid–viscous interactions that trigger shear layer breakdown. In brief, evolving perturbations within the braid region of vortices in the latter half interact with the advecting K–H rolls, culminating in the breakdown and the onset of turbulent flow downstream.

1.
V.
Schulte
and
H. P.
Hodson
, “
Unsteady wake-induced boundary layer transition in high lift LP turbines
,”
ASME J. Turbomach.
120
,
28
35
(
1998
).
2.
S. K.
Roberts
and
M. I.
Yaras
, “
Large-eddy simulation of transition in a separation bubble
,”
ASME J. Fluids Eng.
128
,
232
238
(
2006
).
3.
S.
Sarkar
, “
Identification of flow structures on a LP turbine blade due to periodic passing wakes
,”
ASME J. Fluids Eng.
130
,
061103
(
2008
).
4.
D.
Lengani
,
D.
Simoni
,
M.
Ubaldi
,
P.
Zunino
, and
F.
Bertini
, “
Experimental study of freestream turbulence induced transition in an adverse pressure gradient
,”
Exp. Therm. Fluid Sci.
84
,
18
27
(
2017
).
5.
A.
Samson
and
S.
Sarkar
, “
Effects of freestream turbulence on transition of a separated boundary layer over the leading-edge of a constant thickness aerofoil
,”
ASME J. Fluids Eng.
138
,
021202
(
2016
).
6.
K.
Anand
and
S.
Sarkar
, “
Features of laminar separated boundary layer near the leading-edge of a model airfoil for different angles of attack: An experimental study
,”
ASME J. Fluids Eng.
139
,
021201
(
2017
).
7.
S.
Katiyar
and
S.
Sarkar
, “
Flow transition on the suction surface of a controlled-diffusion compressor blade using a large-eddy simulation
,”
Phys. Fluids
34
,
094108
(
2022
).
8.
L.
Jones
,
R.
Sandberg
, and
N.
Sandham
, “
Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence
,”
J. Fluid Mech.
602
,
175
207
(
2008
).
9.
O.
Marxen
,
M.
Lang
, and
U.
Rist
, “
Vortex formation and vortex breakup in a laminar separation bubble
,”
J. Fluid Mech.
728
,
58
90
(
2013
).
10.
N.
Sandham
, “
Transitional separation bubbles and unsteady aspects of aerofoil stall
,”
Aeronaut. J.
112
,
395
404
(
2008
).
11.
L.
Huang
, Ph.D. thesis,
University of Kentucky
,
Lexington, Kentucky, United States
,
2004
.
12.
J. P.
Bons
,
R.
Sondergaard
, and
R. B.
Rivir
, “
The fluid dynamics of LPT blade separation control using pulsed jets
,”
ASME J. Turbomach.
124
,
77
85
(
2002
).
13.
R. J.
Volino
, “
Separation control on low-pressure turbine airfoils using Synthetic vortex generator jets
,”
ASME J. Turbomach.
125
,
765
777
(
2003
).
14.
P.
Koumoutsakos
and
I.
Mezic
,
Control of Fluid Flow
(
Springer-Verlag
,
Berlin
,
2006
).
15.
S.
Yarusevych
,
J. G.
Kawall
, and
P. E.
Sullivan
, “
Separated-shear-layer development on an airfoil at low Reynolds numbers
,”
AIAA J.
46
,
3060
3069
(
2008
).
16.
S. S.
Diwan
and
O. N.
Ramesh
, “
On the origin of the inflectional instability of a laminar separation bubble
,”
J. Fluid Mech.
629
,
263
298
(
2009
).
17.
L.
Jones
,
R.
Sandberg
, and
N.
Sandham
, “
Stability and receptivity characteristics of a laminar separation bubble on an aerofoil
,”
J. Fluid Mech.
648
,
257
296
(
2010
).
18.
O.
Marxen
and
D. S.
Henningson
, “
The effect of small amplitude convective disturbances on the size and bursting of a laminar separation bubble
,”
J. Fluid Mech.
671
,
1
33
(
2011
).
19.
O.
Marxen
,
M.
Lang
,
U.
Rist
, and
S.
Wagner
, “
A combined experimental/numerical study of unsteady phenomena in a laminar separation bubble
,”
Flow, Turbul. Combust.
71
,
133
146
(
2003
).
20.
D.
Simoni
,
M.
Ubaldi
,
P.
Zunino
,
D.
Lengani
, and
F.
Bertini
, “
An experimental investigation of the separated-flow transition under high-lift turbine blade pressure gradients
,”
Flow. Turbul. Combust.
88
,
45
62
(
2012
).
21.
Z.
Yang
and
I. E.
Abdalla
, “
On secondary instability of a transitional separation bubble
,”
Comput. Fluids
179
,
595
603
(
2019
).
22.
J. H.
Watmuff
, “
Evolution of a wave packet into vortex loops in a laminar separation bubble
,”
J. Fluid Mech.
397
,
119
169
(
1999
).
23.
M.
Alam
and
N.
Sandham
, “
Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment
,”
J. Fluid Mech.
410
,
1
28
(
2000
).
24.
D.
Simoni
,
D.
Lengani
,
M.
Ubaldi
,
P.
Zunino
, and
M.
Dellacasagrande
, “
Inspection of the dynamic properties of laminar separation bubbles: Freestream turbulence intensity effects for different Reynolds numbers
,”
Exp. Fluids
58
,
66
(
2017
).
25.
M. S.
Istvan
and
S.
Yarusevych
, “
Effects of freestream turbulence intensity on transition in a laminar separation bubble formed over an airfoil
,”
Exp. Fluids
59
,
52
(
2018
).
26.
K.
Durović
,
L.
De Vincentiis
,
D.
Simoni
,
D.
Lengani
,
J.
Pralits
,
D. S.
Henningson
, and
A.
Hanifi
, “
Freestream turbulence-induced boundary-layer transition in low-pressure turbines
,”
ASME J. Turbomach.
143
,
081015
(
2021
).
27.
S.
Sarkar
, “
Influence of wake structure on unsteady flow in a low pressure turbine blade passage
,”
ASME J. Turbomach.
131
,
041016
(
2009
).
28.
S.
Sarkar
and
H.
Babu
, “
Large eddy simulation on the interactions of wake and film-cooling near a leading edge
,”
ASME J. Turbomach.
137
,
011005
(
2015
).
29.
V.
Michelassi
,
J. G.
Wissink
,
J.
Frohlich
, and
W.
Rodi
, “
Large-eddy simulation of flow around low-pressure turbine blade with incoming wakes
,”
AIAA J.
41
,
2143
2215
(
2003
).
30.
G. J.
Walker
and
J. P.
Gostelow
, “
Effects of adverse pressure gradients on the nature and length of boundary layer transition
,”
ASME J. Turbomach.
112
,
196
(
1990
).
31.
S.
Burgmann
and
W.
Schröder
, “
Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements
,”
Exp. Fluids
45
,
675
691
(
2008
).
32.
M. S.
Boutilier
and
S.
Yarusevych
, “
Separated shear layer transition over an airfoil at a low Reynolds number
,”
Phys. Fluids
24
,
084105
(
2012
).
33.
D.
Simoni
,
D.
Lengani
,
M.
Dellacasagrande
,
S.
Kubacki
, and
E.
Dick
, “
An accurate data base on laminar-to-turbulent transition in variable pressure gradient flows
,”
Int. J. Heat Fluid Flow
77
,
84
97
(
2019
).
34.
M.
Dellacasagrande
,
D.
Barsi
,
D.
Lengani
,
D.
Simoni1
, and
J.
Verdoya
, “
Response of a flat plate laminar separation bubble to Reynolds number, freestream turbulence and adverse pressure gradient variation
,”
Exp. Fluids
61
,
128
(
2020
).
35.
Y.
Qu
,
D.
Barsi
,
D.
Simoni
,
P.
Zunino
, and
Y.
Luan
, “
Investigation of laminar separation bubble on flat plate with adverse pressure gradient: time-averaged flow field analysis
,”
Int. J. Aerosp. Eng.
2021
,
1
14
.
36.
D. M.
Sharma
and
K.
Poddar
, “
Investigations on quasi-steady characteristics for an airfoil oscillating at low reduced frequencies
,”
Int. J. Aerosp. Eng.
2010
,
1
.
37.
S.
Yavuzkurt
, “
A guide to uncertainty analysis of hotwire data
,”
ASME J. Fluids Eng.
106
,
181
186
(
1984
).
38.
R. J.
Adrian
and
J.
Westerweel
,
Particle Image Velocimtery
(
Cambridge University Press
,
Cambridge
,
2011
).
39.
Y. B.
Suzen
,
P.
Huang
,
L. S.
Hultgren
, and
D. E.
Ashpis
, “
Predictions of separated and transitional boundary layers under low-pressure turbine airfoil conditions using an intermittency transport equation
,”
ASME J. Turbomach.
125
,
455
464
(
2003
).
40.
P.
Bradshaw
,
An Introduction to Turbulence and Its Measurement
(
Pergamon Press
,
Oxford
,
1971
).
41.
P.
Singh
and
S.
Sarkar
, “
Excitation of shear layer due to surface roughness near the leading edge: An experiment
,”
ASME J. Fluids Eng.
143
,
051301
(
2021
).
42.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgridscale eddy viscosity model
,”
Phys. Fluids A: Fluid Dyn.
3
,
1760
(
1991
).
43.
D. K.
Lilly
, “
A proposed modification of the germano subgrid-scale closure method
,”
Phys. Fluids A: Fluid Dyn.
4
,
633
(
1992
).
44.
P. R.
Voke
and
Z.
Yang
, “
Numerical study of bypass transition
,”
Phys. Fluids
7
,
2256
2264
(
1995
).
45.
J. R.
Brinkerhoff
and
M. I.
Yaras
, “
Interaction of viscous and inviscid instability modes in separation–bubble transition
,”
Phys. Fluids
23
,
124102
(
2011
).
46.
M.
Langari
and
Z.
Yang
, “
Numerical study of the primary instability in a separated boundary layer transition under elevated freestream turbulence
,”
Phys. Fluids
25
,
074106
(
2013
).
47.
H. J.
Li
and
Z.
Yang
, “
Separated boundary layer transition under pressure gradient in the presence of freestream turbulence
,”
Phys. Fluids
31
,
104106
(
2019
).
48.
S.
Sarkar
and
P. R.
Voke
, “
Large-eddy simulation of unsteady surface pressure over a low-pressure turbine blade due to interactions of passing wakes and inflexional boundary layer
,”
ASME J. Turbomach.
128
,
221
231
(
2006
).
49.
R.
Kraichnan
, “
Diffusion by a random velocity field
,”
Phys. Fluids
13
,
22
31
(
1970
).
50.
R.
Smirnov
,
S.
Shi
, and
I.
Celik
, “
Random flow generation technique for large eddy simulations and particle-dynamics modeling
,”
ASME J. Fluids Eng.
123
,
359
371
(
2001
).
51.
A. V.
Arena
and
T. J.
Mueller
, “
Laminar separation, transition and turbulent reattachment near the leading edge of airfoils
,”
AIAA J.
18
,
747
753
(
1980
).
52.
R.
Gerakopulous
,
M. S. H.
Boutilier
, and
S.
Yarusevych
, “
Aerodynamic characterisation of a NACA 0018 airfoil at low Reynolds numbers
,”
AIAA
Paper No.
2010
4629
(
2010
).
53.
R. D.
Stieger
,
D.
Hollis
, and
H. P.
Hodson
, “
Unsteady surface pressures due to wake-induced transition in a laminar separation bubble on a low-pressure cascade
,”
ASME J. Turbomach.
126
,
544
550
(
2004
).
54.
D.
Lengani
,
D.
Simoni
,
M.
Ubaldi
, and
P.
Zunino
, “
POD analysis of the unsteady behavior of a laminar separation bubble
,”
Exp. Therm. Fluid Sci.
58
,
70
79
(
2014
).
55.
P. R.
Spalart
and
M. K.
Strelets
, “
Mechanisms of transition and heat transfer in a separation bubble
,”
J. Fluid Mech.
403
,
329
349
(
2000
).
56.
Z. Y.
Yang
and
P. R.
Voke
, “
Large-eddy simulation of boundary layer separation and transition at a change of surface curvature
,”
J. Fluid Mech.
439
,
305
333
(
2001
).
57.
J.
Dahnert
,
C.
Lyko
, and
D.
Peitsch
, “
Transition mechanisms in laminar separated flow under simulated low pressure turbine aerofoil conditions
,”
ASME J. Turbomach.
135
,
011007
(
2013
).
58.
B.
McAuliffe
and
M.
Yaras
, “
Transition mechanisms in separation bubbles under low and elevated-freestream turbulence
,”
ASME J. Turbomach.
132
,
011004
011010
(
2010
).
59.
P.
Singh
and
S.
Sarkar
, “
Excitation of a separated flow by a series of protuberances near the leading edge of a model aerofoil
,”
ASME J. Turbomach.
145
,
111001
(
2023
).
60.
M. V.
Ol
,
E.
Hanff
,
B.
McAuliffe
,
U.
Scholz
, and
C.
Kaehler
, “
Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities
,”
AIAA
Paper No.
2005
5149
(
2005
).
61.
S.
Dhawan
and
R.
Narasimha
, “
Some properties of boundary layer flow during the transition from laminar to turbulent motion
,”
J. Fluid Mech.
3
,
418
436
(
1958
).
62.
R. J.
Volino
,
M. P.
Schultz
, and
C. M.
Pratt
, “
Conditional sampling in a transitional boundary layer under high freestream turbulence conditions
,”
ASME J. Fluids Eng.
125
,
28
37
(
2003
).
63.
T. B.
Hedley
and
J. F.
Keffer
, “
Turbulent/non-turbulent decisions in an intermittent flow
,”
J. Fluid Mech.
64
,
625
644
(
1974
).
64.
J. R.
Volino
and
S. L.
Hultgren
, “
Measurements in separated and transitional boundary layers under low-pressure turbine airfoil conditions
,”
ASME J. Turbomach.
123
,
189
197
(
2001
).
65.
S. K.
Roberts
and
M. I.
Yaras
, “
Boundary-layer transition affected by surface roughness and freestream turbulence
,”
ASME J. Fluids Eng.
127
,
449
457
(
2005
).
66.
A.
Samson
,
K.
Naicker
, and
S. S.
Diwan
, “
Instability mechanisms and intermittency distribution in adverse pressure gradient attached and separated boundary layers
,”
Phys. Fluids
33
,
094106
(
2021
).
67.
M.
Matsubara
and
P. H.
Alfredsson
, “
Disturbance growth in boundary layers subjected to freestream turbulence
,”
J. Fluid Mech.
430
,
149
168
(
2001
).
68.
P.
Luchini
, “
Reynolds number independent instability of the boundary layer over a flat surface. Part 2. Optimal perturbations
,”
J. Fluid Mech.
404
,
289
309
(
2000
).
69.
W.
Balzer
and
H. F.
Fasel
, “
Numerical investigation of the role of freestream turbulence in boundary-layer separation
,”
J. Fluid Mech.
801
,
289
321
(
2016
).
70.
S.
Chandrasekar
,
Hydrodynamic and Hydromagnetic Stability
(
Clarendon Press
,
Oxford
,
1961
).
71.
G. J.
Walker
, “
Transitional flow on axial turbomachine blading
,”
AIAA J.
27
,
595
602
(
1989
).
72.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
(
Springer Science & Business Media
,
2000
), Vol.
142
.
73.
V.
Dabaria
, “
Linear stability analysis of measured inflectional velocity profiles in separated boundary layer flows
,”
Master's thesis
(
Indian Institute of Technology
,
Kanpur, India
,
2015
).
74.
M. S. H.
Boutilier
and
S.
Yarusevych
, “
Sensitivity of linear stability analysis of measured separated shear layers
,”
Eur. J. Mech. B/Fluids
37
,
129
142
(
2013
).
75.
T.
Jaroslawski
,
M.
Forte
,
O.
Vermeersch
,
J.
Moschetta
, and
E.
Gowree
, “
Disturbance growth in a laminar separation bubble subjected to freestream turbulence
,”
J. Fluid Mech.
956
,
A33
(
2023
).
76.
J. W.
Kurelek
,
M.
Kotsonis
, and
S.
Yarusevych
, “
Transition in a separation bubble under tonal and broadband acoustic excitation
,”
J. Fluid Mech.
853
,
1
36
(
2018
).
77.
J.
Kurelek
, “
The vortex dynamics of laminar separation bubbles
,” Ph.D. thesis (
University of Waterloo
,
2021
).
78.
C. H. K.
Williamson
, “
Three-dimensional wake transition
,”
J. Fluid Mech.
328
,
345
407
(
1996
).
79.
J. O.
Hinze
,
Turbulence
(
McGraw-Hill
,
New York
,
1959
).
80.
R. E.
Mayle
, “
The 1991 IGTI Scholar Lecture: The role of laminar-turbulent transition in gas turbine engines
,”
ASME J. Turbomach.
113
,
506
536
(
1991
).
81.
A.
Hatman
and
T.
Wang
, “
A prediction model for separated-flow transition
,”
ASME J. Turbomach.
121
,
594
602
(
1999
).
82.
T. J.
Praisner
and
J. P.
Clark
, “
Predicting transition in turbomachinery—Part I: A review and new model development
,”
ASME J. Turbomach.
129
,
1
13
(
2007
).
You do not currently have access to this content.