Water entry in polar regions is a hot topic of mechanical dynamics. Nonetheless, the presence of floating ice can significantly influence the water entry process. In this paper, a novel two-way fluid–structure interaction (FSI) scheme based on the penalty function is proposed that is suitable for collision between objects into the water. In this scheme, the collision between the projectile and the floating ice is solved by the penalty function, and then, the collision information is transmitted to the fluid solver to solve the passive water entry process. Using dynamic models and experimental data, the accuracy of the new FSI scheme is validated. The cavity evolution and dynamic response of the floating ice colliding with the projectile are studied. During passive water entry, the development of the splash crown is inhibited. The contact line at the floating ice exhibits different movement states under different mass ratios (M). Subsequently, the passive water entry of eccentric collisions is studied, and the influence of eccentricity ( L iz *) is considered. Different collision modes and contact-sliding modes occur between the floating ice and the projectile during the eccentric collision. The evolution of the cavity also appears to have asymmetric characteristics. The horizontal displacement of the floating ice influences the transition of the collision mode under the same wetted area.

1.
E.
Ghabache
,
A.
Antkowiak
,
C.
Josserand
, and
T.
Séon
, “
On the physics of fizziness: How bubble bursting controls droplets ejection
,”
Phys. Fluids
26
,
121701
(
2014
).
2.
A. L.
Xing
,
B. J. Y.
Li
,
C. M. H.
Jiang
, and
D. L. X.
Zhao
, “
Simulation of coalescence dynamics of droplets on surfaces with different wettabilities
,”
Phys. Fluids
34
,
072114
(
2022
).
3.
M. L.
Bao
,
Y. L.
Guo
,
L. Y.
Gong
, and
S. Q.
Shen
, “
Interface evolution characteristics of dual droplet successive oblique impact on liquid film
,”
Phys. Fluids
34
,
062115
(
2022
).
4.
M. A.
Samaha
and
M.
Gad-el-Hak
, “
Slippery surfaces: A decade of progress
,”
Phys. Fluids
33
,
071301
(
2021
).
5.
B.
Chang
,
M.
Croson
,
L.
Straker
,
S.
Gart
,
C.
Dove
,
J.
Gerwin
, and
S.
Jung
, “
How seabirds plunge-dive without injuries
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
12006
12011
(
2016
).
6.
S. T.
Hsieh
and
G. V.
Lauder
, “
Running on water: Three-dimensional force generation by basilisk lizards
,”
Proc. Natl. Acad. Sci. U. S. A.
101
,
16784
16788
(
2004
).
7.
S.
Nagahiro
and
Y.
Hayakawa
, “
Theoretical and numerical approach to “magic angle” of stone skipping
,”
Phys. Rev. Lett.
94
,
174501
(
2005
).
8.
C. H.
Li
,
C.
Wang
,
Y. J.
Wei
,
W. X.
Xia
, and
C. J.
Zhang
, “
Hydrodynamic force and attitude angle characteristics of a spinning stone impacting a free surface
,”
Phys. Fluids
33
,
123309
(
2021
).
9.
C. H.
Li
,
C.
Wang
,
Y. J.
Wei
, and
W. X.
Xia
, “
Three-dimensional numerical simulation of cavity dynamics of a stone with different spinning velocities
,”
Int. J. Multiphase Flow
129
,
103339
(
2020
).
10.
S.
Gong
,
T.
Zhang
,
X.
Wang
, and
C.
Liu
, “
Numerical simulation on dynamic behaviour of deepwater J-lay systems
,”
Ocean Eng.
196
,
106771
(
2020
).
11.
P.
Xu
,
Z.
Du
,
F.
Huang
, and
A.
Javanmardi
, “
Numerical simulation of deepwater S-lay and J-lay pipeline using vector form intrinsic finite element way
,”
Ocean Eng.
234
,
109039
(
2021
).
12.
S. S.
Xia
,
Y. J.
Wei
,
C.
Wang
, and
W.
Cao
, “
Experimental study on high-speed vertical water entry of the semi-sealed cylindrical shell
,”
Ocean Eng.
277
,
114340
(
2023
).
13.
J. Y.
Sun
,
S. L.
Sun
,
Z. F.
Zhang
, and
H. L.
Ren
, “
Numerical investigation on entry of an inclined cylinder into water under uniform current and wind
,”
Ocean Engin.
287
,
115851
(
2013
).
14.
M.
Jalalisendi
,
G.
Benbelkacem
, and
M.
Porfiri
, “
Solid obstacles can reduce hydrodynamic loading during water entry
,”
Phys. Rev. Fluids
3
,
074801
(
2018
).
15.
L. B.
Smolka
and
C. K.
McLaughlin
, “
Sphere entry through an oil lens floating on water
,”
Phys. Rev. Fluids
4
,
044001
(
2019
).
16.
Z. T.
Guo
,
T.
Chen
,
W.
Zhang
, and
Z. C.
Mu
, “
Cavity dynamics in hydrodynamic ram analysis of confined containers under ballistic impacts
,”
Ocean Eng.
218
,
108036
(
2020
).
17.
H. M.
Yan
,
M. Y.
Liu
,
J.
Kominiarczuk
, and
D. K. P.
Yue
, “
Cavity dynamics in water entry at low Froude numbers
,”
J. Fluid Mech.
641
,
441
461
(
2009
).
18.
Y. A.
Semenov
and
G. X.
Wu
, “
Water entry of an expanding body with and without splash
,”
J. Fluid Mech.
862
,
924
950
(
2019
).
19.
H. J.
Zekri1
,
A. A.
Korobkin
, and
M. J.
Cooker
, “
Gravity effect on water entry during an early stage
,”
J. Fluid Mech.
916
,
A10
(
2021
).
20.
R.
Bergmann
,
D. V. D.
Meer
,
S.
Gekle
,
A. V. D.
Bos
, and
D.
Lohse
, “
Controlled impact of a disk on a water surface: Cavity dynamics
,”
J. Fluid Mech.
633
,
381
409
(
2009
).
21.
J. O.
Marston1
,
I. U.
Vakarelski1
, and
S. T.
Thoroddsen
, “
Cavity formation by the impact of Leidenfrost spheres
,”
J. Fluid Mech.
699
,
465
488
(
2012
).
22.
T. Z.
Sun
,
J.
Shen
,
Q.
Jiang
, and
Y.
Li
, “
Dynamics analysis of high-speed water entry of axisymmetric body using fluid-structure-acoustic coupling method
,”
J. Fluids Struct.
111
,
103551
(
2022
).
23.
S. S.
Xia
,
Y. J.
Wei
,
C.
Wang
, and
X. Y.
Hu
, “
Numerical investigation of the high-speed vertical water entry of a cylindrical shell
,”
Phys. Fluids
35
,
035132
(
2023
).
24.
L.
Yang
,
Y. J.
Wei
,
C.
Wang
, and
G. Q.
Xia
, “
Viscoelasticity dependence on hydrodynamic responses during water entry
,”
Ocean Eng.
272
,
113890
(
2023
).
25.
L.
Yang
,
Y. J.
Wei
, and
Y. N.
Guo
, “
Water impact of deformable spheres with vertical and oblique entries
,”
Phys. Fluids
35
,
033320
(
2023
).
26.
D. N.
Yan
,
T.
Mikkola
,
A.
Lakshmynarayanana
,
S.
Todter
,
T. E.
Schellin
,
J.
Neugebauer
,
O. E.
Moctar
, and
S.
Hirdaris
, “
A study into the FSI modelling of flat plate water entry and related uncertainties
,”
Mar. Struct.
86
,
103296
(
2022
).
27.
V. K.
Kostikov
,
M.
Hayatdavoodi
, and
R. C.
Ertekin
, “
Drift of elastic floating ice sheets by waves and current: Multiple sheets
,”
Phys. Fluids
34
,
057113
(
2022
).
28.
Z. F.
Li
,
G. X.
Wu
, and
C. Y.
Ji
, “
Interaction of wave with a body submerged below an ice sheet with multiple arbitrarily spaced cracks
,”
Phys. Fluids
30
,
057107
(
2018
).
29.
H.
Wang
,
Y. C.
Luo
,
Z. H.
Chen
,
Z. Q.
Guo
, and
Z. G.
Huang
, “
Influences of ice-water mixture on the vertical water-entry of a cylinder at a low velocity
,”
Ocean Eng.
256
,
111464
(
2022
).
30.
H.
Wang
,
Z. G.
Huang
,
D.
Huang
,
Y.
Hou
,
Z. H.
Chen
,
Z. Q.
Guo
,
S.
Sun
, and
R. Y. X.
Xue
, “
Influences of floating ice on the vertical water entry process of a trans-media projectile at high speeds
,”
Ocean Eng.
265
,
112548
(
2022
).
31.
X. Y.
Hu
,
Y. J.
Wei
,
C.
Wang
,
L.
Yang
, and
J. X.
Lu
, “
Analysis of the cavity evolution law of the projectile passing through the underwater ice-hole
,”
Ocean Eng.
266
,
113164
(
2022
).
32.
X. Y.
Hu
,
Y. J.
Wei
,
C.
Wang
,
G. L.
Wang
, and
Y. L.
Wang
, “
Cavity dynamics of the projectile passing through the ice hole
,”
J. Appl. Phys.
133
,
114702
(
2023
).
33.
X. Y.
Hu
,
Y. J.
Wei
, and
C.
Wang
, “
Study on high-speed water entry of the projectile passing through an ice hole in a low-temperature environment based on a modified thermodynamic cavitation model
,”
Phys. Fluids
35
,
017128
(
2023
).
34.
V. T.
Nguyen
,
T. H.
Phan
, and
W. G.
Park
, “
Modeling and numerical simulation of ricochet and penetration of water entry bodies using an efficient free surface model
,”
Int. J. Mech. Sci.
182
,
105726
(
2020
).
35.
F.
Chen
,
W. J.
Zhong
, and
D. C.
Wan
, “
Numerical investigation of the water entry of inclined cylinders using dynamic sliding mesh method
,”
Ocean Eng.
257
,
111525
(
2022
).
36.
F. R.
Menter
, “
Zonal two equation k–ω turbulence models for aerodynamic flows
,” AIAA Paper No. AIAA 1993-2906,
1993
.
37.
H. J.
Chen
,
Z. Q.
Feng
,
Y. H.
Du
,
Q. W.
Chen
, and
H. C.
Miao
, “
Spectral finite element method for efficient simulation of nonlinear interactions between Lamb waves and breathing cracks within the bi-potential framework
,”
Int. J. Mech. Sci.
215
,
106954
(
2022
).
38.
R.
Zhang
,
G.
Zhao
,
W.
Wang
, and
X. X.
Du
, “
Large deformation frictional contact formulations for isogeometric Kirchhoff–Love shell
,”
Int. J. Mech. Sci.
249
,
108253
(
2023
).
39.
Y.
Zhou
,
A.
Nordmark
, and
A.
Eriksson
, “
Multi-parametric stability investigation for thin spherical membranes with contacts
,”
Int. J. Mech. Sci.
131–132
,
334
344
(
2017
).
40.
P.
Romero-Gomez
and
M. C.
Richmond
, “
Numerical simulation of circular cylinders in free-fall
,”
J. Fluids Struct.
61
,
154
(
2016
).
41.
L.
Liu
,
J.
Yang
,
H.
Lu
,
X.
Tian
, and
W.
Lu
, “
Numerical simulations on the movement of a heavy sphere in upward Poiseuille flow
,”
Ocean Eng.
172
,
245
(
2019
).
42.
S. S.
Xia
,
Y. J.
Wei
,
C.
Wang
, and
W.
Cao
, “
Asymmetric flow action on hydrodynamics and structural dynamics for high-speed oblique water entry of the semi-sealed cylindrical shell
,”
Appl. Ocean Res.
138
,
103623
(
2023
).
43.
W.
Dou
,
Z. J.
Xu
,
Y.
Han
, and
F. L.
Huang
, “
A ductile fracture model incorporating stress state effect
,”
Int. J. Mech. Sci.
241
,
107965
(
2023
).
44.
P. K.
Moore
and
J. E.
Flaherty
, “
Adaptive local overlapping grid methods for parabolic systems in two space dimensions
,”
J. Comput. Phys.
98
,
54
(
1992
).
45.
B. Y.
Yang
,
Z.
Sun
,
G. Y.
Zhang
,
Q. K.
Wang
,
Z.
Zong
, and
Z. J.
Li
, “
Numerical estimation of ship resistance in broken ice and investigation on the effect of floe geometry
,”
Mar. Struct.
75
,
102867
(
2021
).
46.
M.
Islam
,
J.
Mills
,
R.
Gash
, and
W.
Pearson
, “
A literature survey of broken ice-structure interaction modelling methods for ships and offshore platforms
,”
Ocean Eng.
221
,
108527
(
2021
).
47.
C.
Wang
,
X. H.
Hu
,
T. P.
Tian
,
C. Y.
Guo
, and
C. H.
Wang
, “
Numerical simulation of ice loads on a ship in broken ice fields using an elastic ice model
,”
Int. J. Naval Archit. Ocean Eng.
12
,
414
427
(
2020
).
48.
J. O.
Marston
,
T. T.
Truscott
,
N. B.
Speirs
,
M. M.
Mansoor
, and
S. T.
Thoroddsen
, “
Crown sealing and buckling instability during water entry of spheres
,”
J. Fluid Mech.
794
,
506
529
(
2016
).
49.
C.
Duez
,
C.
Ybert
,
C.
Clanet
, and
L.
Bocquet
, “
Making a splash with water repellency
,”
Nat. Phys.
3
,
180
183
(
2007
).
50.
H.
Ding
,
B. Q.
Chen
,
H. R.
Liu
,
C. Y.
Zhang
,
P.
Gao
, and
X. Y.
Lu
, “
On the contact-line pinning in cavity formation during solid-liquid impact
,”
J. Fluid Mech.
783
,
504
525
(
2015
).
51.
D. Q.
Minh
and
A.
Gustav
, “
The splash of a solid sphere impacting on a liquid surface: Numerical simulation of the influence of wetting
,”
Phys. Fluids
21
,
022102
(
2009
).
52.
U.
Jain
,
P.
Vega-Martínez
, and
D.
van der Meer
, “
Air entrapment and its effect on pressure impulses in the slamming of a flat disc on water
,”
J. Fluid Mech.
928
,
A31
(
2021
).
53.
H. C.
Mayer
and
R.
Krechetnikov
, “
Flat plate impact on water
,”
J. Fluid Mech.
850
,
1066
1116
(
2018
).
54.
U.
Jain
,
A.
Gauthier
,
D.
Lohse
, and
D. V. D.
Meer
, “
Air-cushioning effect and Kelvin-Helmholtz instability before the slamming of a disk on water
,”
Phys. Rev. Fluids
6
,
L042001
(
2021
).
55.
J.
Eshraghi
,
S.
Jung
, and
P. P.
Vlachos
, “
To seal or not to seal: The closure dynamics of a splash curtain
,”
Phys. Rev. Fluids
5
,
104001
(
2020
).
56.
L.
Vincent
,
T.
Xiao
,
D.
Yohann
,
S.
Jung
, and
E.
Kanso
, “
Dynamics of water entry
,”
J. Fluid Mech.
846
,
508
535
(
2018
).
57.
M. M.
Mansoor
,
J. O.
Marston
,
I. U.
Vakarelski
, and
S. T.
Thoroddsen
, “
Water entry without surface seal: Extended cavity formation
,”
J. Fluid Mech.
743
,
295
326
(
2009
).
58.
N.
Kim
and
H.
Park
, “
Water entry of rounded cylindrical bodies with different aspect ratios and surface conditions
,”
J. Fluid Mech.
863
,
757
788
(
2019
).
59.
X. Y.
Hu
,
Y. J.
Wei
, and
C.
Wang
, “
Dynamic characteristics of water entry under the effect of floating ice and an independent distance model of floating ice
,”
Int. J. Mech. Sci.
253
,
108395
(
2023
).
60.
X. Y.
Hu
,
Y. J.
Wei
,
C.
Wang
,
J. R.
Wang
,
D. L.
Yu
,
Q.
Yang
, and
Y. L.
Wang
, “
Analysis of influencing factors of the projectile entering the water through the ice hole
,”
Ocean Engin.
280
,
114563
(
2023
).
61.
X. Y.
Hu
,
Y. J.
Wei
, and
C.
Wang
, “
Hydrodynamics of the projectile entering the water under the ice hole constraint environment
,”
Phys. Fluids
35
,
043305
(
2023
).
62.
Z. F.
Li
,
Y. Y.
Shi
, and
G. X.
Wu
, “
Interaction of wave with a body floating on a wide polynya
,”
Phys. Fluids
29
,
097104
(
2017
).
63.
Z. F.
Li
and
G. X.
Wu
, “
Hydrodynamic force on a ship floating on the water surface near a semi-infinite ice sheet
,”
Phys. Fluids
33
,
127101
(
2021
).
64.
T. I.
Khabakhpashevaa
and
A. A.
Korobkin
, “
Blunt body impact onto viscoelastic floating ice plate with a soft layer on its upper surface
,”
Phys. Fluids
33
,
062105
(
2021
).
65.
O. T.
Gudmestad
and
K. E.
Solberg
, “
Findings from two Arctic search and rescue exercises north of Spitzbergen
,”
Polar Geogr.
42
,
160
175
(
2019
).
66.
L. Y.
Ye
,
C. Y.
Guo
,
C.
Wang
,
C. H.
Wang
, and
X.
Chang
, “
Peridynamic solution for submarine surfacing through ice
,”
Ships Offshore Struct.
15
,
535
549
(
2020
).
67.
A.
Tassin
,
D. J.
Piro
,
A. A.
Korobkin
,
K. J.
Maki
, and
M. J.
Cooker
, “
Two dimensional water entry and exit of a body whose shape varies in time
,”
J. Fluids Struct.
40
,
317
336
(
2013
).
68.
J.
Gerritsma
and
W.
Beukelman
, “
Analysis of the modified strip theory for the calculation of ship movements and wave bending moments
,”
Int. Shipbuild. Prog.
14
,
319
337
(
1967
).
69.
T. A.
Loukakis
and
P. D.
Scfavounos
, “
Some extensions of the classical approach to strip theory of ship movements, including the calculation of mean added forces and moments
,”
J. Ship Res.
22
,
1
19
(
1978
).
70.
T.
Khabakhpasheva
,
Y.
Chen
,
A.
Korobkin
, and
K.
Maki
, “
Impact onto an Ice Floe
,”
J. Adv. Res. Ocean Eng.
4
,
146
162
(
2018
).
71.
A.
Iafrati
and
A. A.
Korobkin
, “
Asymptotic estimates of hydrodynamic loads in the early stage of water entry of a circular disk
,”
J. Eng. Math.
69
,
199
224
(
2011
).
You do not currently have access to this content.