Herein, a simulation model is proposed that combines the lattice Boltzmann method (LBM) and a magnetic particle model to observe particle ring patterns in evaporating sessile droplets, controlling them using a magnetic field. Brownian dynamics and van der Waals force models are applied to the nanoparticles. The interactions between the magnetic particles are simulated using the magnetic particle model, which is validated using previous experimental particle distribution results. The particle deposition patterns are compared according to the substrate wetting conditions. The distribution exhibited a clear coffee-ring pattern as the pinning time of the contact line increased. In the case of a non-pinned droplet, the thermal Marangoni flow was maintained, and the adhesion of the particles was delayed by the vortex. A thick, uniform ring pattern was formed when a magnetic field was applied to the particles. The particle bundles formed by the magnetic field were resistant to flow. To verify this result, the average particle velocity was measured. Consequently, particle transfer was classified into three stages. In Stage I, capillary force dominates, Marangoni flow develops in Stage II, and particle adhesion occurs in Stage III. With an increase in the magnetic strength, the velocity change exhibited a decrease across all stages.

1.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
, “
Capillary flow as the cause of ring stains from dried liquid drops
,”
Nature
389
,
827
829
(
1997
).
2.
A.
Shimoni
,
S.
Azoubel
, and
S.
Magdassi
, “
Inkjet printing of flexible high-performance carbon nanotube transparent conductive films by coffee ring effect
,”
Nanoscale
6
,
11084
11089
(
2014
).
3.
B.
Dan
,
T. B.
Wingfield
,
J. S.
Evans
,
F.
Mirri
,
C. L.
Pint
,
M.
Pasquali
, and
I. I.
Smalyukh
, “
Templating of self-alignment patterns of anisotropic gold nanoparticles on ordered SWNT macrostructures
,”
ACS Appl. Mater. Interfaces
3
,
3718
3724
(
2011
).
4.
D.
Peer
,
J. M.
Karp
,
S.
Hong
,
O. C.
Farokhzad
,
R.
Margalit
, and
R.
Langer
, “
Nanocarriers as an emerging platform for cancer therapy
,”
Nat. Nanotech.
2
,
751
760
(
2007
).
5.
X.
Dai
,
Z.
Zhang
,
Y.
Jin
,
Y.
Niu
,
H.
Cao
,
X.
Liang
,
L.
Chen
,
J.
Wang
, and
X.
Peng
, “
Solution-processed, high-performance light-emitting diodes based on quantum dots
,”
Nature
515
,
96
99
(
2014
).
6.
M. K.
Choi
,
J.
Yang
,
K.
Kang
,
D. C.
Kim
,
C.
Choi
,
C.
Park
,
S. J.
Kim
,
S. I.
Chae
,
T. H.
Kim
,
J. H.
Kim
,
T.
Hyeon
, and
D. H.
Kim
, “
Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing
,”
Nat. Commun.
6
,
7149
(
2015
).
7.
S.
Chung
,
K.
Cho
, and
T.
Lee
, “
Recent progress in inkjet-printed thin-film transistors
,”
Adv. Sci. (Weinh)
6
,
1801445
(
2019
).
8.
S.
Khan
,
L.
Lorenzelli
, and
R. S.
Dahiya
, “
Technologies for printing sensors and electronics over large flexible substrates: A review
,”
IEEE Sens. J.
15
,
3164
3185
(
2015
).
9.
K. Y.
Mitra
,
A.
Alalawe
,
S.
Voigt
,
C.
Boeffel
, and
R. R.
Baumann
, “
Manufacturing of all inkjet-printed organic photovoltaic cell arrays and evaluating their suitability for flexible electronics
,”
Micromachines (Basel)
9
,
642
(
2018
).
10.
M.
Yu
,
M. H.
Saeed
,
S.
Zhang
,
H.
Wei
,
Y.
Gao
,
C.
Zou
,
L.
Zhang
, and
H.
Yang
, “
Luminescence enhancement, encapsulation, and patterning of quantum dots toward display applications
,”
Adv. Funct. Mater.
32
,
2109472
(
2021
).
11.
M.
Parsa
,
S.
Harmand
,
K.
Sefiane
,
M.
Bigerelle
, and
R.
Deltombe
, “
Effect of substrate temperature on pattern formation of nanoparticles from volatile drops
,”
Langmuir
31
,
3354
3367
(
2015
).
12.
A. G.
Marin
,
H.
Gelderblom
,
A.
Susarrey-Arce
,
A.
van Houselt
,
L.
Lefferts
,
J. G.
Gardeniers
,
D.
Lohse
, and
J. H.
Snoeijer
, “
Building microscopic soccer balls with evaporating colloidal fakir drops
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
16455
16458
(
2012
).
13.
D.
Mampallil
,
J.
Reboud
,
R.
Wilson
,
D.
Wylie
,
D. R.
Klug
, and
J. M.
Cooper
, “
Acoustic suppression of the coffee-ring effect
,”
Soft matter
11
,
7207
7213
(
2015
).
14.
P. J.
Yunker
,
T.
Still
,
M. A.
Lohr
, and
A. G.
Yodh
, “
Suppression of the coffee-ring effect by shape-dependent capillary interactions
,”
Nature
476
,
308
311
(
2011
).
15.
C. H.
Chon
,
S.
Paik
,
J. B.
Tipton
, and
K. D.
Kihm
, “
Effect of nanoparticle sizes and number densities on the evaporation and dryout characteristics for strongly pinned nanofluid droplets
,”
Langmuir
23
,
2953
2960
(
2007
).
16.
H. H.
Lee
,
S. C.
Fu
,
C. Y.
Tso
, and
C. Y.
Chao
, “
Study of residue patterns of aqueous nanofluid droplets with different particle sizes and concentrations on different substrates
,”
Int. J. Heat Mass Transfer
105
,
230
236
(
2017
).
17.
R.
Bhardwaj
,
X.
Fang
,
P.
Somasundaran
, and
D.
Attinger
, “
Self-assembly of colloidal particles from evaporating droplets: Role of DLVO interactions and proposition of a phase diagram
,”
Langmuir
26
,
7833
7842
(
2010
).
18.
K. N.
Al-Milaji
,
R. L.
Hadimani
,
S.
Gupta
,
V. K.
Pecharsky
, and
H.
Zhao
, “
Inkjet printing of magnetic particles toward anisotropic magnetic properties
,”
Sci. Rep.
9
,
16261
(
2019
).
19.
S. K.
Saroj
and
P. K.
Panigrahi
, “
Magnetic suppression of the coffee ring effect
,”
J. Magn. Magn. Mater.
513
,
167199
(
2020
).
20.
Q. Y.
Wang
and
G. P.
Zhu
, “
Magnetic regulation on evaporation behavior of ferrofluid sessile droplets
,”
Electrophoresis
44
,
1879
1888
(
2023
).
21.
O.
Navarro-Hinojosa
,
S.
Ruiz-Loza
, and
M.
Alencastre-Miranda
, “
Physically based visual simulation of the lattice Boltzmann method on the GPU: A survey
,”
J. Supercomput.
74
,
3441
3467
(
2018
).
22.
A. L.
Kupershtokh
,
D. A.
Medvedev
, and
D. I.
Karpov
, “
On equations of state in a lattice Boltzmann method
,”
Comput. Math. with Appl.
58
,
965
974
(
2009
).
23.
S.
Gong
and
P.
Cheng
, “
Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows
,”
Comput. Fluids
53
,
93
104
(
2012
).
24.
P.
Yuan
and
L.
Schaefer
, “
Equations of state in a lattice Boltzmann model
,”
Phys. Fluids
18
,
042101
(
2006
).
25.
S.
Sohrabi
and
Y.
Liu
, “
Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods
,”
Phys. Rev. E
97
,
033105
(
2018
).
26.
Q.
Li
,
K. H.
Luo
,
Q. J.
Kang
, and
Q.
Chen
, “
Contact angles in the pseudopotential lattice Boltzmann modeling of wetting
,”
Phys. Rev. E
90
,
053301
(
2014
).
27.
Q.
Li
,
Y.
Yu
, and
K. H.
Luo
, “
Implementation of contact angles in pseudopotential lattice Boltzmann simulations with curved boundaries
,”
Phys. Rev. E
100
,
053313
(
2019
).
28.
D.
Wang
and
P.
Cheng
, “
Constructing a ghost fluid layer for implementation of contact angle schemes in multiphase pseudopotential lattice Boltzmann simulations for non-isothermal phase-change heat transfer
,”
Int. J. Heat Mass Transfer
201
,
123618
(
2023
).
29.
S.
Gong
and
P.
Cheng
, “
A lattice Boltzmann method for simulation of liquid–vapor phase-change heat transfer
,”
Int. J. Heat Mass Transfer
55
,
4923
4927
(
2012
).
30.
C.
Zhang
,
P.
Cheng
, and
F.
Hong
, “
Mesoscale simulation of heater size and subcooling effects on pool boiling under controlled wall heat flux conditions
,”
Int. J. Heat Mass Transfer
101
,
1331
1342
(
2016
).
31.
C.
Zhang
,
H.
Zhang
,
Y.
Zhao
, and
C.
Yang
, “
An immersed boundary-lattice Boltzmann model for simulation of deposited particle patterns in an evaporating sessile droplet with dispersed particles
,”
Int. J. Heat Mass Transfer
181
,
121905
(
2021
).
32.
R.
Verberg
,
J. M.
Yeomans
, and
A. C.
Balazs
, “
Modeling the flow of fluid/particle mixtures in microchannels: Encapsulating nanoparticles within monodisperse droplets
,”
J. Chem. Phys.
123
,
224706
(
2005
).
33.
H. C.
Hamaker
, “
The London—van der Waals attraction between spherical particles
,”
Physica
4
,
1058
1072
(
1937
).
34.
Z.-G.
Feng
and
E. E.
Michaelides
, “
The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems
,”
J. Comput. Phys.
195
,
602
628
(
2004
).
35.
S.
Melle
,
O. G.
Calderon
,
M. A.
Rubio
, and
G. G.
Fuller
, “
Microstructure evolution in magnetorheological suspensions governed by mason number
,”
Phys. Rev. E
68
,
041503
(
2003
).
36.
D.
Wang
and
P.
Cheng
, “
Nanoparticles deposition patterns in evaporating nanofluid droplets on smooth heated hydrophilic substrates: A 2D immersed boundary-lattice Boltzmann simulation
,”
Int. J. Heat Mass Transfer
168
,
120868
(
2021
).
37.
A. S.
Joshi
and
Y.
Sun
, “
Wetting dynamics and particle deposition for an evaporating colloidal drop: A lattice Boltzmann study
,”
Phys. Rev. E
82
,
041401
(
2010
).
38.
M.
Zhao
and
X.
Yong
, “
Nanoparticle motion on the surface of drying droplets
,”
Phys. Rev. Fluids
3
,
034201
(
2018
).
39.
L.
Zhang
and
X.
Wang
, “
Numerical coffee-ring patterns with new interfacial schemes in 3D hybrid LB-LE model
,”
Powder Technol.
392
,
130
140
(
2021
).
40.
M.
Jadav
,
R. J.
Patel
, and
R. V.
Mehta
, “
Influence of magnetic field on evaporation of a ferrofluid droplet
,”
J. Appl. Phys.
122
,
145302
(
2017
).
You do not currently have access to this content.