This paper reports the experimental results of the severe slugging (SS) flow characteristics in a downward inclined pipeline-catenary flexible riser system. The non-intrusive optical measurement with high-speed cameras was employed to capture the evolution of liquid slugs and the gas–liquid interface. Five SS patterns are identified in the considered flow velocity range. There are two kinds of severe slugging I (SSI-1 and SSI-2) with the essential difference in the occurrence of the fast blockage stage before the slug formation (SF) stage. The severe slugging II (SSII) is characterized with the longest liquid slug less than a riser length and the absence of slug production stage. The liquid slug is further shortened in severe slugging III (SSIII), exhibiting local liquid fallback and accumulation of multiple slugs in the riser. The severe slugging transition (SST) occurs due to the switching between the SSI-1 and SSII. The flow regime partition is plotted in the vsl (liquid superficial velocity)–vsg (gas superficial velocity) diagram, presenting alteration as the inclination angle of upstream pipeline varies. Generally, the SSI is easier to form at a higher inclination angle. The intermittent occurrence of hydrodynamic slug in the upstream pipeline in the SF stage contributes to the appearance of SSI-2 to SST. The SS cycle has approximately a negative exponent relation with vsg, while the riser base pressure changes exponentially with the increase in vsl.

1.
Y.
Liu
,
X.
Zhu
,
J.
Song
,
H.
Wu
,
S.
Zhang
, and
S.
Zhang
, “
Research on bypass pigging in offshore riser system to mitigate severe slugging
,”
Ocean Eng.
246
,
110606
(
2022
).
2.
M.
Onuoha
,
M.
Duan
,
X.
Xu
, and
J.
Liu
, “
Numerical modelling of the interaction between severe slugging and dynamic response of deepwater risers: A time-domain ANHE-FD based solution
,”
Int. J. Non-Linear Mech.
138
,
103834
(
2022
).
3.
S.
Casolo
, “
Severe slugging flow identification from topological indicators
,”
Digital Chem. Eng.
4
,
100045
(
2022
).
4.
Q.
Xu
,
W.
Li
,
W.
Liu
,
X.
Zhang
,
C.
Yang
, and
L.
Guo
, “
Intelligent recognition of severe slugging in a long-distance pipeline-riser system
,”
Exp. Therm. Fluid Sci.
113
,
110022
(
2020
).
5.
N.
Li
,
B.
Chen
,
X.
Du
, and
D.
Han
, “
Experimental and numerical study on the elimination of severe slugging by riser outlet choking
,”
Energies
15
,
7284
(
2022
).
6.
W.
Ren
, “
Analysis of flow characteristics and influencing factors of severe slugging flow in an underwater pipe-catenary riser
,”
Chem. Technol. Fuels Oils
57
,
828
840
(
2021
).
7.
I.
Belgacem
,
R.
Mekhlouf
,
N.
Aloui1
,
N.
Djaballah
, and
S.
Benmamar
, “
CFD simulation of two-phase severe slugging circulating through a pipeline-riser system
,”
J. Eng. Appl. Sci.
15
,
3281
3289
(
2020
).
8.
X.
Luo
,
L.
He
, and
H.
Ma
, “
Flow pattern and pressure fluctuation of severe slugging in pipeline-riser system
,”
Chin. J. Chem. Eng.
19
,
26
32
(
2011
).
9.
X.
Wang
and
L. J.
Guo
, “
Experimental investigation and simulation of severe slugging in pipeline-riser system
,”
J. Eng. Thermophys.
27
(
4
),
611
614
(
2006
).
10.
R.
Malekzadeh
,
R. F.
Mudde
, and
R. A. W. M.
Henkes
, “
Dual-frequency severe slugging in horizontal pipeline-riser systems
,”
J. Fluid Eng.
134
,
121301
(
2012
).
11.
H.
Zhu
,
J.
Hu
,
Y.
Gao
,
C.
Ji
, and
T.
Zhou
, “
Experimental investigation on flow-induced vibration of a Flexible catenary riser conveying severe slugging with variable gas superficial velocity
,”
J. Fluids Struct.
113
,
103650
(
2022
).
12.
H.
Zhu
,
J.
Hu
, and
Y.
Gao
, “
Severe slug flow-induced nonlinear dynamic behavior of a flexible catenary riser
,”
Phys. Fluids
33
,
071705
(
2021
).
13.
K.
Park
,
T.
Kim
,
Y.
Kim
,
N.
Lee
, and
Y.
Seo
, “
Experimental investigation of model-based IMC control of severe slugging
,”
J. Pet. Sci. Eng.
204
,
108732
(
2021
).
14.
G. R.
Azevedo
,
J. L.
Baliño
, and
I.
Andreolli
, “
Nonlinear stability analysis for severe slugging in an air–water two-phase flow
,”
Int. J. Multiphase Flow
159
,
104334
(
2023
).
15.
J. L.
Baliño
,
K. P.
Burr
, and
R. H.
Nemoto
, “
Modeling and simulation of severe slugging in air-water pipeline-riser systems
,”
Int. J. Multiphase Flow
36
(
8
),
643
660
(
2010
).
16.
A.
Fadairo
,
C.
Obi
,
K.
Ling
,
V.
Rasouli
,
O.
Aboaba
, and
O.
Gbadamosi
, “
An improved model for severe slugging stability criteria in offshore pipeline-riser systems
,”
Pet. Res.
7
,
318
328
(
2022
).
17.
R.
Malekzadeh
,
R. A. W. M.
Henkes
, and
R. F.
Mudde
, “
Severe slugging in a long pipeline–riser system: Experiments and predictions
,”
Int. J. Multiphase Flow
46
,
9
21
(
2012
).
18.
V.
Banjara
,
E.
Pereyra
,
C.
Avila
, and
C.
Sarica
, “
Critical review and comparison of severe slugging mitigation techniques
,”
Geo. Sci. Eng.
228
,
212082
(
2023
).
19.
X.
Zhao
,
Q.
Xu
,
Q.
Wu
,
Y.
Chang
,
Y.
Cao
,
S.
Zou
, and
L.
Guo
, “
Effect of high pressure on severe slugging and multiphase flow pattern transition in a long pipeline-riser system
,”
Exp. Therm. Fluid Sci.
148
,
110976
(
2023
).
20.
I.
Andreolli
,
G. R.
Azevedo
, and
J. L.
Baliño
, “
Application of stability solver for severe slugging considering a choking device and a tubing connected to a wet Christmas tree
,”
J. Pet. Sci. Eng.
192
,
107316
(
2020
).
21.
G. R.
Azevedo
,
J. L.
Baliño
, and
K. P.
Burr
, “
Influence of pipeline modeling in stability analysis for severe slugging
,”
Chem. Eng. Sci.
161
,
1
13
(
2017
).
22.
J. L.
Baliño
, “
Modeling and simulation of severe slugging in air–water systems including inertial effects
,”
J. Comput. Sci.
5
(
3
),
482
495
(
2014
).
23.
Q.
Xu
,
X.
Wang
,
L.
Chang
,
J.
Wang
,
Y.
Li
,
W.
Li
, and
L.
Guo
, “
Signal optimization for recognition of gas–liquid two-phase flow regimes in a long pipeline-riser system
,”
Measurement
200
,
111581
(
2022
).
24.
H.
Zhu
,
Y.
Gao
, and
H.
Zhao
, “
Experimental investigation of slug flow-induced vibration of a flexible riser
,”
Ocean Eng.
189
,
106370
(
2019
).
25.
H.
Zhu
,
Y.
Gao
, and
H.
Zhao
, “
Coupling vibration response of a curved flexible riser under the combination of internal slug flow and external shear current
,”
J. Fluids Struct.
91
,
102724
(
2019
).
26.
H.
Zhu
,
Y.
Gao
,
J.
Hu
,
H.
Zhao
, and
Y.
Bao
, “
Temporal-spatial mode competition in slug-flow induced vibration of catenary flexible riser in both in plane and out of plane
,”
Appl. Ocean Res.
119
,
103017
(
2022
).
27.
H.
Zhu
,
Y.
Gao
, and
H.
Zhao
, “
Experimental investigation on the flow-induced vibration of a free-hanging flexible riser by internal unstable hydrodynamic slug flow
,”
Ocean Eng.
164
,
488
507
(
2018
).
28.
Y.
Gao
,
H.
Zhu
,
Q.
Li
,
J.
Hu
,
T.
Zhou
, and
Y.
Shao
, “
An insight into the interaction between the in-plane and out-of-plane responses of a catenary flexible riser
,”
Phys. Fluids
34
,
107115
(
2022
).
29.
H.
Zhu
,
P.
Lin
, and
Y.
Gao
, “
Vortex-induced vibration and mode transition of a curved flexible free-hanging cylinder in exponential shear flows
,”
J. Fluids Struct.
84
,
56
76
(
2019
).
30.
H.
Zhu
,
J.
Hu
,
Y.
Gao
,
H.
Zhao
, and
W.
Xu
, “
Spatial-temporal mode transition in vortex-induced vibration of catenary flexible riser
,”
J. Fluids Struct
102
,
103234
(
2021
).
31.
H.
Zhu
,
J.
Hu
,
Y.
Gao
, and
H.
Zhao
, “
Experimental study on the vortex-induced vibration of a catenary flexible riser under sheared flows
,”
Int. J. Offshore Polar Eng.
31
,
283
292
(
2021
).
32.
H.
Zhu
,
H.
Zhao
, and
N.
Srinil
, “
Experimental investigation on vortex-induced vibration and solid-structure impact of a near-bottom horizontal flexible pipeline in oblique shear flow
,”
J. Fluids Struct.
106
,
103356
(
2021
).
33.
H.
Zhu
,
H.
Zhao
,
Y.
Xie
, and
X.
Zhang
, “
Experimental investigation of the effect of the wall proximity on the mode transition of a vortex-induced vibrating flexible pipe and the evolution of wall-impact
,”
J. Hydrodyn.
34
(
2
),
329
353
(
2022
).
34.
Y. P.
Liu
,
H.
Zhang
,
S. H.
Wang
, and
J.
Wang
, “
Prediction of pressure gradient and Holdup in horizontal liquid–liquid segregated flow with small Eötvös number
,”
Chem. Eng. Commun.
196
,
697
(
2009
).
35.
Y. X.
Liu
,
E. R.
Upchurch
, and
E. M.
Ozbayoglu
, “
Experimental study of single Taylor bubble rising in stagnant and downward flowing non-Newtonian fluids in inclined pipes
,”
Energies
14
,
578
(
2021
).
36.
E. A.
Chinnov
and
O. A.
Kabov
, “
Two-phase flows in pipes and capillary channels
,”
High Temp.
44
,
773
(
2006
).
37.
D.
Moalem-Maron
and
A.
Dukler
, “
Flooding and upward film flow in vertical tubes: Ii. speculations on film flow mechanisms
,”
Int. J. Multiphase Flow
10
,
599
621
(
1984
).
38.
G.
Wallis
,
One Dimensional Two-Phase Flow
(
McGraw-Hill
,
New York
,
1969
).
39.
H.
Zhou
,
L.
Guo
,
H.
Yan
, and
S.
Kuang
, “
Investigation and prediction of severe slugging frequency in pipeline-riser systems
,”
Chem. Eng. Sci.
184
,
72
84
(
2018
).
40.
J.
Duan
,
K.
Chen
,
Y.
You
, and
S.
Gao
, “
Experimental and computational investigations on severe slugging in a catenary riser
,”
China Ocean Eng.
31
(
6
),
653
664
(
2017
).
41.
P.
Wang
,
D.
Deng
,
J.
Gong
,
M.
Peng
,
K.
Wang
, and
J.
Chen
, “
Severe slugging in a free-standing riser
,”
Pet. Sci. Technol.
31
,
1933
1939
(
2013
).
42.
C.
Xie
,
L.
Guo
,
W.
Li
,
H.
Zhou
, and
S.
Zou
, “
The influence of backpressure on severe slugging in multiphase flow pipeline-riser systems
,”
Chem. Eng. Sci.
163
,
68
82
(
2017
).
43.
S.
Gao
,
Y.
You
,
W.
Li
, and
C.
Yang
, “
Characteristics of the severe slugging under different gas-liquid physical parameters
,”
J. Ship Mech.
17
,
214
225
(
2013
).
You do not currently have access to this content.