The liquid carry-over (LCO) phenomenon brings about the performance deterioration of gas–liquid cyclone separator and an increase in pressure drop. However, the formation mechanism of the LCO and its manifestation in the separator cylinder and the overflow pipe have not been fully understood. This work investigated the flow process of the LCO by visual observation and quantitative measurement of the overflow liquid flow rate and liquid holdup. The transient gas–liquid flow feature in the overflow pipe and spatiotemporal relationship between the separator inlet and outlet were characterized by time-frequency analysis and wavelet coherence of liquid holdup, respectively. The results showed that the size of air core determines two kinds of sources of the LCO, including the surrounding liquid direct entry into the overflow pipe and the film short-circuit flow beneath the top wall of the separator. When the air core can continuously wrap up the overflow inlet, the film short-circuit flow became the primary source of the LCO, which was embodied in the significant reduction of the overflow liquid flow rate. Three flow patterns, namely, slug flow, churn flow, and annular flow, were classified in the overflow pipe. The inlet intermittent flow of the separator led to the distribution of churn flow expanding toward higher gas velocity, which was interpreted by flow pattern transition theory. The time-averaged overflow liquid holdup was well predicted by drift-flux model. The results are beneficial to the proposal of inhibition methods of the LCO and structure design of the separator.

1.
I. A.
Arpandi
,
A. R.
Joshi
,
O.
Shoham
,
S. A.
Shirazi
, and
G. E.
Kouba
, “
Hydrodynamics of two-phase flow in gas–liquid cylindrical cyclone separators
,”
SPE J.
1
,
427
(
1996
).
2.
G.
Kouba
,
S.
Wang
,
L.
Gomez
,
R.
Mohan
, and
O.
Shoham
, “
Review of the state-of the-art gas/liquid cylindrical cyclone (GLCC) technology—field applications
,” in
International Oil and Gas Conference and Exhibition in China 2006 - Sustainable Growth for Oil and Gas
(
Society of Petroleum Engineers
,
2006
), pp.
893
901
.
3.
T.
Ma
,
Y.
Yang
,
W.
Lin
,
Y.
Yang
,
W.
Jia
, and
J.
Zhang
, “
Design of a novel high-efficiency water separator for proton exchange membrane fuel cell system
,”
Int. J. Hydrogen Energy
44
,
5462
(
2019
).
4.
Z.
Xiong
,
M.
Lu
,
M.
Wang
,
H.
Gu
, and
X.
Cheng
, “
Study on flow pattern and separation performance of air–water swirl-vane separator
,”
Ann. Nucl. Energy
63
,
138
(
2014
).
5.
L.
Zhao
,
M.
Jiang
,
B.
Xu
, and
B.
Zhu
, “
Development of a new type high-efficient inner-cone hydrocyclone
,”
Chem. Eng. Res. Des.
90
,
2129
(
2012
).
6.
G. E.
Kouba
,
O.
Shoham
, and
S.
Shirazi
, “
Design and performance of gas–liquid cylindrical cyclone separators
,” in
Proceedings of the BHR Group 7th International Meeting on Multiphase Flow
(
Mechanical Engineering Publications
,
1995
), pp.
307
327
.
7.
T.
Yue
,
J.
Chen
,
J.
Song
,
X.
Chen
,
Y.
Wang
,
Z.
Jia
, and
R.
Xu
, “
Experimental and numerical study of upper swirling liquid film (USLF) among gas–liquid cylindrical cyclones (GLCC)
,”
Chem. Eng. J.
358
,
806
(
2019
).
8.
S.
Movafaghian
,
J.
Jaua-Marturet
,
R. S.
Mohan
,
O.
Shoham
, and
G.
Kouba
, “
The effects of geometry, fluid properties and pressure on the hydrodynamics of gas–liquid cylindrical cyclone separators
,”
Int. J. Multiphase Flow
26
,
999
(
2000
).
9.
L.
Huang
,
S.
Deng
,
Z.
Chen
,
J.
Guan
, and
M.
Chen
, “
Numerical analysis of a novel gas–liquid pre-separation cyclone
,”
Sep. Purif. Technol.
194
,
470
(
2018
).
10.
S.
Ng
,
G.
Priestman
, and
R.
Allen
, “
Investigation of flooding, re-entrainment and grade efficiency in axial flow cyclones
,”
Chem. Eng. Res. Des.
84
,
884
(
2006
).
11.
Z.
Yang
,
J.
Wang
,
J.
Zhang
,
L.
He
,
X.
Luo
,
H.
Su
, and
X.
He
, “
A statistical method for flow pattern and efficiency prediction using pressure drop in a two-stage gas liquid cylindrical cyclone
,”
J. Nat. Gas Sci. Eng.
99
,
104414
(
2022
).
12.
R.
Molina
,
S.
Wang
,
L. E.
Gomez
,
R. S.
Mohan
, and
G.
Kouba
, “
Wet gas separation in gas–liquid cylindrical cyclone (GLCC) separator
,” in
Proceedings of the ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. Volume 2: Structures, Safety and Reliability; Petroleum Technology Symposium
(
ASME
,
2007
), pp.
731
746
.
13.
L.
Yang
,
J.
Zhang
,
Y.
Ma
,
J.
Xu
, and
J.
Wang
, “
Experimental and numerical study of separation characteristics in gas–liquid cylindrical cyclone
,”
Chem. Eng. Sci.
214
,
115362
(
2020
).
14.
R.
Hreiz
,
R.
Lainé
,
J.
Wu
,
C.
Lemaitre
,
C.
Gentric
, and
D.
Fünfschilling
, “
On the effect of the nozzle design on the performances of gas–liquid cylindrical cyclone separators
,”
Int. J. Multiphase Flow
58
,
15
(
2014
).
15.
Z.
Song
, “
Experimental study on the effect of wall material on the performance of gas–liquid cylindrical cyclone
,” M.Sc. thesis (
China University of Petroleum
,
Beijing
,
2020
).
16.
A. C.
Hoffmann
and
L. E.
Stein
,
Gas Cyclones and Swirl Tubes Principles, Design, and Operation
, 2nd ed. (
Springer
,
Berlin Heidelberg
,
2008
).
17.
Y.
Wang
,
J.
Chen
,
Y.
Yang
,
M.
Han
,
Y.
Zhou
,
S.
Ye
,
C.
Yan
, and
T.
Yue
, “
Experimental and numerical performance study of a downward dual-inlet gas–liquid cylindrical cyclone (GLCC)
,”
Chem. Eng. Sci.
238
,
116595
(
2021
).
18.
Y.
Zhou
,
J.
Chen
,
Y.
Wang
,
D.
Zhang
,
H.
Ma
, and
Z.
Li
, “
Experimental and numerical study on the performance of a new dual-inlet gas–liquid cylindrical cyclone (GLCC) based on flow pattern conditioning
,”
Chem. Eng. J.
453
,
139778
(
2023
).
19.
S.
Liu
,
J.
Zhang
,
L.-S.
Wang
, and
J.-Y.
Xu
, “
Separation mechanism and influential factor study on vane-type-associated petroleum gas separator
,”
Sep. Purif. Technol.
250
,
117274
(
2020
).
20.
Q.
Wang
,
J.-Q.
Chen
,
C.
Wang
,
Y.
Shi
,
C.
Shang
,
M.
Zhang
,
Y.-P.
Ji
,
H.
Sun
, and
L.
Kong
, “
Optimum design of inline gas–liquid cyclone separator for wide range of inlet gas volume fractions
,”
Sep. Sci. Technol.
58
,
1640
(
2023
).
21.
Q.-Q.
Wang
,
J.-Q.
Chen
,
C.-S.
Wang
,
Y.-P.
Ji
,
C.
Shang
,
M.
Zhang
,
Y.
Shi
, and
G.-D.
Ding
, “
Design and performance study of a two-stage inline gas–liquid cyclone separator with large range of inlet gas volume fraction
,”
J. Pet. Sci. Eng.
220
,
111218
(
2023
).
22.
Y.
Wang
, “
Gas–liquid flow pattern and separation mechanism of gas–liquid cylindrical cyclone (GLCC)
,” Ph.D. thesis (
China University of Petroleum
,
Beijing
,
2021
).
23.
T.
Yue
, “
Gas–liquid flow behavior and separation mechanism for the upper cylinder in gas–liquid cylindrical cyclone (GLCC)
,” Ph.D. thesis (
China University of Petroleum
,
Beijing
,
2019
).
24.
W.
Chirinos
,
L.
Gomez
,
S.
Wang
,
R.
Mohan
,
O.
Shoham
, and
G.
Kouba
, “
Liquid carry-over in gas/liquid cylindrical cyclone compact separators
,”
SPE J.
5
,
259
(
2000
).
25.
H.
Kataoka
,
Y.
Shinkai
,
S.
Hosokawa
, and
A.
Tomiyama
, “
Swirling annular flow in a steam separator
,”
J. Eng. Gas Turbines Power
131
,
032904
(
2009
).
26.
L.
Liu
and
B.
Bai
, “
Experimental study and similarity analysis of separation efficiency of swirl-vane separator
,”
Nucl. Eng. Des.
359
,
110442
(
2020
).
27.
S.
Kanshio
, “
On upward swirling liquid film in gas–liquid pipe compact separator
,”
Pet. Sci. Eng.
3
,
39
(
2019
).
28.
S.
Kanshio
,
H.
Yeung
, and
L.
Lao
, “
Study of phase distribution in pipe cyclonic compact separator using wire mesh sensor
,”
Flow Meas. Instrum.
53
,
154
(
2017
).
29.
Y.-A.
Wang
,
J.-Y.
Chen
,
T.
Yue
,
Y.
Yang
,
M.-S.
Han
, and
C.-Y.
Yan
, “
Measurement of thickness and analysis on flow characteristics of upper swirling liquid film in gas–liquid cylindrical cyclone
,”
Exp. Therm. Fluid Sci.
123
,
110331
(
2021
).
30.
Z.-M.
Yang
,
Y.-X.
He
,
Q.
Xiang
,
E.
Zio
,
L.-M.
He
,
X.-M.
Luo
,
H.
Su
,
J.
Wang
, and
J.-J.
Zhang
, “
Gas liquid cylindrical cyclone flow regime identification using machine learning combined with experimental mechanism explanation
,”
Pet. Sci.
20
,
540
(
2023
).
31.
Q.
Wang
, “
Study on the flow behavior and separation mechanism of inline cyclone gas–liquid separator
,” Ph.D. thesis (
Beijing University of Chemical Technology
,
2022
).
32.
L.
Yang
,
L.
Luo
,
J.
Wang
,
J.
Xu
, and
Z.
Zhai
, “
Effects of pressure control on droplet size distribution and flow regimes in gas–liquid cylindrical cyclone
,”
J. Nat. Gas Sci. Eng.
100
,
104465
(
2022
).
33.
M.
Fossa
, “
Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas–liquid flows
,”
Flow Meas. Instrum.
9
,
103
(
1998
).
34.
M.
Fossa
,
G.
Guglielmini
, and
A.
Marchitto
, “
Intermittent flow parameters from void fraction analysis
,”
Flow Meas. Instrum.
14
,
161
(
2003
).
35.
R.
Kaji
and
B. J.
Azzopardi
, “
The effect of pipe diameter on the structure of gas/liquid flow in vertical pipes
,”
Int. J. Multiphase Flow
36
,
303
(
2010
).
36.
M.
Fossa
and
G.
Guglielmini
, “
Dynamic void fraction measurements in horizontal ducts with sudden area contraction
,”
Int. J. Heat Mass Transfer
41
,
3807
(
1998
).
37.
M.
Karimi
,
M.
Akhlaghi
,
N. M.
Nouri
,
M.
Taherkhani
, and
V.
Mohammadi
, “
Gradual contraction of pipe cross-section effects on transient behavior of air–water slug flow
,”
Fluid Dyn. Res.
52
,
025502
(
2020
).
38.
J. M.
Mandhane
,
G. A.
Gregory
, and
K.
Aziz
, “
A flow pattern map for gas–liquid flow in horizontal pipes
,”
Int. J. Multiphase Flow
1
,
537
(
1974
).
39.
J. R.
Lister
,
J. M.
Rallison
, and
S. J.
Rees
, “
The nonlinear dynamics of pendent drops on a thin film coating the underside of a ceiling
,”
J. Fluid Mech.
647
,
239
(
2010
).
40.
A.
Pollak
and
L.
Work
, “
The separation of liquid from vapor, using cyclones
,”
Trans. Am. Soc. Mech. Eng.
64
,
31
40
(
1942
).
41.
T.-S.
Lin
,
L.
Kondic
, and
A.
Filippov
, “
Thin films flowing down inverted substrates: Three-dimensional flow
,”
Phys. Fluids
24
,
022105
(
2012
).
42.
B.
Scheid
,
N.
Kofman
, and
W.
Rohlfs
, “
Critical inclination for absolute/convective instability transition in inverted falling films
,”
Phys. Fluids
28
,
044107
(
2016
).
43.
R. J.
Tomlin
,
R.
Cimpeanu
, and
D. T.
Papageorgiou
, “
Instability and dripping of electrified liquid films flowing down inverted substrates
,”
Phys. Rev. Fluids
5
,
013703
(
2020
).
44.
C.
Xu
, “
Experimental study on separation performance of gas–liquid cylindrical cyclone (GLCC)
,” M.Sc. thesis (
China University of Petroleum
,
Beijing
,
2017
).
45.
S.
Wang
,
L.
Gomez
,
R.
Mohan
,
O.
Shoham
,
G.
Kouba
, and
J.
Marrelli
, “
The state-of-the-art of gas–liquid cylindrical cyclone control technology: From laboratory to field
,”
J. Energy Res. Technol.
132
,
032701
(
2010
).
46.
K.
Mishima
and
M.
Ishii
, “
Flow regime transition criteria for upward two-phase flow in vertical tubes
,”
Int. J. Heat Mass Transfer
27
,
723
(
1984
).
47.
Y.
Taitel
,
D.
Barnea
, and
A.
Dukler
, “
Modelling flow pattern transitions for steady upward gas‐liquid flow in vertical tubes
,”
AlChE J.
26
,
345
(
1980
).
48.
X.
Huang
,
T.
Fang
,
K.
Pang
,
Q.
Guo
,
B.
Qiu
, and
J.
Lu
, “
Air-entrained vortex in open intake: Time–frequency analysis and the interaction with subsurface vortices
,”
Phys. Fluids
34
,
113313
(
2022
).
49.
H.
Kato
,
K.
Takamure
, and
T.
Uchiyama
, “
Characteristics of vortex shedding in the wake of a sphere with a uniaxial through-hole
,”
AIP Adv.
12
,
105112
(
2022
).
50.
S.
Ueda
,
T.
Arai
,
A.
Ui
,
M.
Furuya
,
R.
Okawa
, and
K.
Shirakawa
, “
Spatio-temporal characteristics of void fraction in heated rod bundle under saturated pool boiling due to thermal power oscillation
,”
Nucl. Eng. Des.
402
,
112103
(
2023
).
51.
A.
Grinsted
,
J. C.
Moore
, and
S.
Jevrejeva
, “
Application of the cross wavelet transform and wavelet coherence to geophysical time series
,”
Nonlinear Processes Geophys.
11
,
561
(
2004
).
52.
R.
Perna
,
M.
Abela
,
M.
Mameli
,
A.
Mariotti
, and
S.
Filippeschi
, “
Flow characterization of a pulsating heat pipe through the wavelet analysis of pressure signals
,”
Appl. Therm. Eng.
171
,
115128
(
2020
).
53.
K. W.
McQuillan
and
P. B.
Whalley
, “
Flow patterns in vertical two-phase flow
,”
Int. J. Multiphase Flow
11
,
161
(
1985
).
54.
C.
Posada
and
P. J.
Waltrich
, “
Effect of forced flow oscillations on churn and annular flow in a long vertical tube
,”
Exp. Therm. Fluid Sci.
81
,
345
(
2017
).
55.
C.
Posada
and
P. J.
Waltrich
, “
Similarities and differences in churn and annular flow regimes in steady-state and oscillatory flows in a long vertical tube
,”
Exp. Therm. Fluid Sci.
93
,
272
(
2018
).
56.
D.
Barnea
, “
Transition from annular flow and from dispersed bubble flow—unified models for the whole range of pipe inclinations
,”
Int. J. Multiphase Flow
12
,
733
(
1986
).
57.
L.
Liu
and
B.
Bai
, “
A mechanistic model for the prediction of swirling annular flow pattern transition
,”
Chem. Eng. Sci.
199
,
405
(
2019
).
58.
G. B.
Wallis
,
One-Dimensional Two-Phase Flow
(
McGraw-Hill
,
New York
,
1969
).
59.
P. V.
Godbole
,
C. C.
Tang
, and
A. J.
Ghajar
, “
Comparison of void fraction correlations for different flow patterns in upward vertical two-phase flow
,”
Heat Transfer Eng.
32
,
843
(
2011
).
60.
M. A.
Woldesemayat
and
A. J.
Ghajar
, “
Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes
,”
Int. J. Multiphase Flow
33
,
347
(
2007
).
61.
S. Z.
Rouhani
and
E.
Axelsson
, “
Calculation of void volume fraction in the subcooled and quality boiling regions
,”
Int. J. Heat Mass Transfer
13
,
383
(
1970
).
You do not currently have access to this content.